15 research outputs found
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan
Characterization of the wood combustion process based on the TG analysis, numerical modelling and measurements performed on the experimental stand
The paper presents selected results of thermogravimetric (TG) analyses for softwood (pine) and hardwood (beech). The composition of the studied fuels has been defined and described. Both wood types used in the TG tests were studied in order to define their content of basic components such as lignin, cellulose and hemicellulose. Types of wood used in the TGA have been combusted on the experimental stand which is equipped with a set of temperature sensors and an exhaust analyser. A comparison of the TG analysis and the combustion in the heating unit has been performed to find relations between the kinetics of devolatilisation for different wood species and to determine the exhaust composition. Numerical modelling using computational fluid dynamics (CFD) has been performed for the process of carbon monoxide oxidation to supplement the tests results. The results of the comparisons of the performed analyses can be useful in all areas related to the process of optimisation and improvement of combustion, pyrolysis and devolatilisation process conditions in small scale heating units
Characterization of the wood combustion process based on the TG analysis, numerical modelling and measurements performed on the experimental stand
The paper presents selected results of thermogravimetric (TG) analyses for softwood (pine) and hardwood (beech). The composition of the studied fuels has been defined and described. Both wood types used in the TG tests were studied in order to define their content of basic components such as lignin, cellulose and hemicellulose. Types of wood used in the TGA have been combusted on the experimental stand which is equipped with a set of temperature sensors and an exhaust analyser. A comparison of the TG analysis and the combustion in the heating unit has been performed to find relations between the kinetics of devolatilisation for different wood species and to determine the exhaust composition. Numerical modelling using computational fluid dynamics (CFD) has been performed for the process of carbon monoxide oxidation to supplement the tests results. The results of the comparisons of the performed analyses can be useful in all areas related to the process of optimisation and improvement of combustion, pyrolysis and devolatilisation process conditions in small scale heating units
The steam pressure impacts reducing system for a biomass cogenerator based on monitoring of the frequency characteristics of the steam actuator
Introduced through policy instruments, as well as due to increase awareness of and demand for energy, alternative, renewable energy sources are becoming increasingly popular and necessary. The growing market and standards are forcing producers of renewable energy sources to constantly improve the quality of their products. Biomass trigenerators are one way of obtaining such energy, both in the form of electricity, heat and cold. These are elements generating steam by burning various solid, liquid or gaseous fuels of organic origin. Rotating machines in the form of turbines or steam engines are used to generate electricity. Unfortunately, they are particularly exposed to steam impacts associated with discontinuous work. This article presents the monitoring and prevention system for such impacts. It is based on the analysis of the frequency spectrum of vibrations of such generators and can be used to implement a trigenerator control system that will reduce the influence of such impacts. With proposed diagnostic system, the efficiency and life span of a Renewable Energy Source can increase significantly
High resolution LT-STM imaging of PTCDA molecules assembled on an InSb(001) c(8 2) surface
The self-assembling of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules deposited on an InSb(001) c(8 2) surface at sub-monolayer quantities has been investigated at low temperature (77 K) using scanning tunnelling microscopy. Sub-molecular resolution was obtained on PTCDA molecules. The results reveal that individual PTCDA molecules are arranged on the substrate in chains parallel to the [110] crystallographic direction, correlated with characteristic features of the low temperature InSb(001) c(8 2) surface electronic structure. A structural model for PTCDA molecules adsorbed on InSb is proposed
PTCDA molecules on a KBr/InSb system : a low temperature STM study
We have used scanning tunnelling microscopy (STM) at 77 K to investigate 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) molecules adsorbed on an ultrathin (1–2 monolayer (ML)) film of KBr grown on a c(8 2)InSb(001) substrate. The molecules are stabilized both at the KBr steps and on the terraces. On the 1 ML film the PTCDA molecules appear predominantly as single entities, whereas on the 2 ML film formation of molecular clusters is preferred. Differences in the adsorption configurations indicate that the interaction between the molecules and the surface differs significantly for the cases of 1 and 2 ML films. We present images of the molecules obtained with sub-molecular resolution for both filled and empty state sampling modes. We argue that the highest occupied molecular orbital (the lowest unoccupied molecular orbital) is responsible for intramolecular contrast in filled (empty) state images of the molecules, even though they are deformed due to strong interaction with the substrate