17 research outputs found
Rare MLL-ELL fusion transcripts in childhood acute myeloid leukemia—association with young age and myeloid sarcomas?
Background
The chromosomal translocation t(11;19)(q23;p13) with a breakpoint within subband 19p13.1 is found mainly in acute myeloid leukemia (AML) and results in the MLL-ELL fusion gene. Variations in the structure of MLL-ELL seem to influence the leukemogenic potency of the fusion in vivo and may lie behind differences in clinical features. The number of cases reported so far is very limited and the addition of more information about MLL-ELL variants is essential if the possible clinical significance of rare fusions is to be determined.
Case presentation
Cytogenetic and molecular genetic analyses were done on the bone marrow cells of a 20-month-old boy with an unusual form of myelomonocytic AML with multiple myeloid sarcomas infiltrating bone and soft tissues. The G-banding analysis together with FISH yielded the karyotype 47,XY, +6,t(8;19;11)(q24;p13;q23). FISH analysis also demonstrated that MLL was split. RNA-sequencing showed that the translocation had generated an MLL-ELL chimera in which exon 9 of MLL (nt 4241 in sequence with accession number NM_005933.3) was fused to exon 6 of ELL (nt 817 in sequence with accession number NM_006532.3). RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcript.
Conclusions
Based on our findings and information on a few previously reported patients, we speculate that young age, myelomonoblastic AML, and the presence of extramedullary disease may be typical of children with rare MLL-ELL fusion transcripts
Giant cell tumour of bone: new treatments in development
Giant cell tumour of bone (GCTB) is a benign osteolytic tumour with three main cellular components: multinucleated osteoclast-like giant cells, mononuclear spindle-like stromal cells (the main neoplastic components) and mononuclear cells of the monocyte/macrophage lineage. The giant cells overexpress a key mediator in osteoclastogenesis: the RANK receptor, which is stimulated in turn by the cytokine RANKL, which is secreted by the stromal cells. The RANK/RANKL interaction is predominantly responsible for the extensive bone resorption by the tumour. Historically, standard treatment was substantial surgical resection, with or without adjuvant therapy, with recurrence rates of 20–56 %. Studies with denosumab, a monoclonal antibody that specifically binds to RANKL, resulted in dramatic treatment responses, which led to its approval by the United States Food and Drugs Administration (US FDA). Recent advances in the understanding of GCTB pathogenesis are essential to develop new treatments for this locally destructive primary bone tumour