6,193 research outputs found
Evidence for non-Gaussianity in the CMB
In a recent Letter we have shown how COBE-DMR maps may be used to disprove
Gaussianity at a high confidence level. In this report we digress on a few
issues closely related to this Letter. We present the general formalism for
surveying non-Gaussianity employed. We present a few more tests for
systematics. We wonder about the theoretical implications of our result.Comment: Proceedings of the Planck meeting, Santender 9
Different fractal properties of positive and negative returns
We perform an analysis of fractal properties of the positive and the negative
changes of the German DAX30 index separately using Multifractal Detrended
Fluctuation Analysis (MFDFA). By calculating the singularity spectra
we show that returns of both signs reveal multiscaling. Curiously,
these spectra display a significant difference in the scaling properties of
returns with opposite sign. The negative price changes are ruled by stronger
temporal correlations than the positive ones, what is manifested by larger
values of the corresponding H\"{o}lder exponents. As regards the properties of
dominant trends, a bear market is more persistent than the bull market
irrespective of the sign of fluctuations.Comment: presented at FENS2007 conference, 8 pages, 4 Fig
Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data
A flexible maximum-entropy component separation algorithm is presented that
accommodates anisotropic noise, incomplete sky-coverage and uncertainties in
the spectral parameters of foregrounds. The capabilities of the method are
determined by first applying it to simulated spherical microwave data sets
emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations
we find that is very difficult to determine unambiguously the spectral
parameters of the galactic components for this data set due to their high level
of noise. Nevertheless, we show that is possible to find a robust CMB
reconstruction, especially at the high galactic latitude. The method is then
applied to these real data sets to obtain reconstructions of the CMB component
and galactic foreground emission over the whole sky. The best reconstructions
are found for values of the spectral parameters: T_d=19 K, alpha_d=2,
beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an
estimated statistical error of \sim 22 muK on an angular scale of 7 degrees
outside the galactic cut whereas the low galactic latitude region presents
contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One
subsection and 6 figures added. Main results unchange
Increasing evidence for hemispherical power asymmetry in the five-year WMAP data
(Abridged)Motivated by the recent results of Hansen et al. (2008) concerning
a noticeable hemispherical power asymmetry in the WMAP data on small angular
scales, we revisit the dipole modulated signal model introduced by Gordon et
al. (2005). This model assumes that the true CMB signal consists of a Gaussian
isotropic random field modulated by a dipole, and is characterized by an
overall modulation amplitude, A, and a preferred direction, p. Previous
analyses of this model has been restricted to very low resolution due to
computational cost. In this paper, we double the angular resolution, and
compute the full corresponding posterior distribution for the 5-year WMAP data.
The results from our analysis are the following: The best-fit modulation
amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072
+/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward
Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The
corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04
and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero
amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from
40 to 64, and all results are consistent to within 1sigma. Similarly, the
Bayesian log-evidence difference with respect to the isotropic model increases
from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the
Jeffreys' scale. The raw best-fit log-likelihood difference increases from
Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger,
results are found for other data combinations. Thus, we find that the evidence
for a dipole power distribution in the WMAP data increases with l in the 5-year
WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for
publication in Ap
- …
