6,193 research outputs found

    Evidence for non-Gaussianity in the CMB

    Get PDF
    In a recent Letter we have shown how COBE-DMR maps may be used to disprove Gaussianity at a high confidence level. In this report we digress on a few issues closely related to this Letter. We present the general formalism for surveying non-Gaussianity employed. We present a few more tests for systematics. We wonder about the theoretical implications of our result.Comment: Proceedings of the Planck meeting, Santender 9

    Different fractal properties of positive and negative returns

    Full text link
    We perform an analysis of fractal properties of the positive and the negative changes of the German DAX30 index separately using Multifractal Detrended Fluctuation Analysis (MFDFA). By calculating the singularity spectra f(α)f(\alpha) we show that returns of both signs reveal multiscaling. Curiously, these spectra display a significant difference in the scaling properties of returns with opposite sign. The negative price changes are ruled by stronger temporal correlations than the positive ones, what is manifested by larger values of the corresponding H\"{o}lder exponents. As regards the properties of dominant trends, a bear market is more persistent than the bull market irrespective of the sign of fluctuations.Comment: presented at FENS2007 conference, 8 pages, 4 Fig

    Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data

    Get PDF
    A flexible maximum-entropy component separation algorithm is presented that accommodates anisotropic noise, incomplete sky-coverage and uncertainties in the spectral parameters of foregrounds. The capabilities of the method are determined by first applying it to simulated spherical microwave data sets emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations we find that is very difficult to determine unambiguously the spectral parameters of the galactic components for this data set due to their high level of noise. Nevertheless, we show that is possible to find a robust CMB reconstruction, especially at the high galactic latitude. The method is then applied to these real data sets to obtain reconstructions of the CMB component and galactic foreground emission over the whole sky. The best reconstructions are found for values of the spectral parameters: T_d=19 K, alpha_d=2, beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an estimated statistical error of \sim 22 muK on an angular scale of 7 degrees outside the galactic cut whereas the low galactic latitude region presents contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One subsection and 6 figures added. Main results unchange

    Increasing evidence for hemispherical power asymmetry in the five-year WMAP data

    Get PDF
    (Abridged)Motivated by the recent results of Hansen et al. (2008) concerning a noticeable hemispherical power asymmetry in the WMAP data on small angular scales, we revisit the dipole modulated signal model introduced by Gordon et al. (2005). This model assumes that the true CMB signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p. Previous analyses of this model has been restricted to very low resolution due to computational cost. In this paper, we double the angular resolution, and compute the full corresponding posterior distribution for the 5-year WMAP data. The results from our analysis are the following: The best-fit modulation amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072 +/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04 and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from 40 to 64, and all results are consistent to within 1sigma. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the 5-year WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for publication in Ap
    corecore