658 research outputs found

    Scaling the neutral atom Rydberg gate quantum computer by collective encoding in Holmium atoms

    Full text link
    We discuss a method for scaling a neutral atom Rydberg gate quantum processor to a large number of qubits. Limits are derived showing that the number of qubits that can be directly connected by entangling gates with errors at the 10310^{-3} level using long range Rydberg interactions between sites in an optical lattice, without mechanical motion or swap chains, is about 500 in two dimensions and 7500 in three dimensions. A scaling factor of 60 at a smaller number of sites can be obtained using collective register encoding in the hyperfine ground states of the rare earth atom Holmium. We present a detailed analysis of operation of the 60 qubit register in Holmium. Combining a lattice of multi-qubit ensembles with collective encoding results in a feasible design for a 1000 qubit fully connected quantum processor.Comment: 6 figure

    A Seriuos Academic Work

    Get PDF
    С.А. Кравченко «Социологический толковый англо-русский словарь». М.: МГИМО(У) МИД России, 2012. 690 с. (Серия «Энциклопедии и словари МГИМО(У)»)

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Formation of Nanoclusters and Nanopillars in Nonequilibrium Surface Growth for Catalysis Applications: Growth by Diffusional Transport of Matter in Solution Synthesis

    Full text link
    Growth of nanoclusters and nanopillars is considered in a model of surface deposition of building blocks (atoms) diffusionally transported from solution to the forming surface structure. Processes of surface restructuring are also accounted for in the model, which then yields morphologies of interest in catalysis applications. Kinetic Monte Carlo numerical approach is utilized to explore the emergence of FCC-symmetry surface features in Pt-type metal nanostructures. Available results exemplify evaluation of the fraction of the resulting active sites with desirable properties for catalysis, such as (111)-like coordination, as well as suggest optimal growth regimes

    Photon echoes generated by reversing magnetic field gradients in a rubidium vapour

    Full text link
    We propose a photon echo quantum memory scheme using detuned Raman coupling to long lived ground states. In contrast to previous 3-level schemes based on controlled reversible inhomogeneous broadening that use sequences of π\pi-pulses, the scheme does not require accurate control of the coupling dynamics to the ground states. We present a proof of principle experimental realization of our proposal using rubidium atoms in a warm vapour cell. The Raman resonance line is broadened using a magnetic field that varies linearly along the direction of light propagation. Inverting the magnetic field gradient rephases the atomic dipoles and re-emits the light pulse in the forward direction

    Enhancement of the electric dipole moment of the electron in the YbF molecule

    Full text link
    We calculate an effective electric field on the unpaired electron in the YbF molecule. This field determines sensitivity of the molecular experiment to the electric dipole moment of the electron. We use experimental value of the spin-doubling constant to estimate the admixture of the configuration with the hole in the 4f-shell of Ytterbium to the ground state of the molecule. This admixture reduces the field by 7%. Our value for the effictive field is 5.1 a.u. = 2.5 10^{10} V/cm.Comment: 5 pages, LATEX, uses revtex.st

    Three- and Four-Body Scattering Calculations including the Coulomb Force

    Full text link
    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily, October 2008, to be published in Few-Body System

    Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms

    Full text link
    Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the realization of novel atomic clocks and degenerate quantum gases. At the same time, they are attracting considerable theoretical attention in the context of quantum information processing. Here we demonstrate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the electronic angular momentum can be used to implement many-body systems with an unprecedented degree of symmetry, characterized by the SU(N) group with N as large as 10. Moreover, the interplay of the nuclear spin with the electronic degree of freedom provided by a stable optically excited state allows for the study of spin-orbital physics. Such systems may provide valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases.Comment: 15 pages, 10 figures. V2: extended experimental accessibility and Kondo sections in the main text (including new Fig. 5b) and in the Methods; reorganized other parts; added reference

    Ultracold Gases of Ytterbium: Ferromagnetism and Mott States in an SU(6) Fermi System

    Get PDF
    It is argued that ultracold quantum degenerate gas of ytterbium 173^{173}Yb atoms having nuclear spin I=5/2I = 5/2 exhibits an enlarged SU(6)(6) symmetry. Within the Landau Fermi liquid theory, stability criteria against Fermi liquid (Pomeranchuk) instabilities in the spin channel are considered. Focusing on the SU(n>2)(n > 2) generalizations of ferromagnetism, it is shown within mean-field theory that the transition from the paramagnet to the itinerant ferromagnet is generically first order. On symmetry grounds, general SU(n)(n) itinerant ferromagnetic ground states and their topological excitations are also discussed. These SU(n>2)(n > 2) ferromagnets can become stable by increasing the scattering length using optical methods or in an optical lattice. However, in an optical lattice at current experimental temperatures, Mott states with different filling are expected to coexist in the same trap, as obtained from a calculation based on the SU(6)(6) Hubbard model.Comment: 4+ pages, 1 figure; v2: Improved discussion of the SU(6) symmetry-breaking patterns; v3: added further discussion on the order of the transition. Added Reference

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions
    corecore