5 research outputs found

    CARMENES input catalog of M dwarfs: VII. New rotation periods for the survey stars and their correlations with stellar activity

    Full text link
    Abridged: We measured photometric and spectroscopic ProtP_{\rm rot} for a large sample of nearby bright M dwarfs with spectral types from M0 to M9, as part of our continual effort to fully characterize the Guaranteed Time Observation programme stars of the CARMENES survey. We determine ProtP_{\rm rot} for 129 stars. Combined with the literature, we tabulate ProtP_{\rm rot} for 261 stars, or 75% of our sample. We evaluate the plausibility of all periods available for this sample by comparing them with activity signatures and checking for consistency between multiple measurements. We find that 166 of these stars have independent evidence that confirmed their ProtP_{\rm rot}. There are inconsistencies in 27 periods, which we classify as debated. A further 68 periods are identified as provisional detections that could benefit from independent verification. We provide an empirical relation for the ProtP_{\rm rot} uncertainty as a function of the ProtP_{\rm rot} value, based on the dispersion of the measurements. We show that published formal errors seem to be often underestimated for periods ≳10\gtrsim 10 d. We highlight the importance of independent verification on ProtP_{\rm rot} measurements, especially for inactive M dwarfs. We examine rotation-activity relations with emission in X-rays, Hα\alpha, Ca II H & K, and surface magnetic field strengths. We find overall agreement with previous works, as well as tentative differences in the partially versus fully convective subsamples. We show ProtP_{\rm rot} as a function of stellar mass, age, and galactic kinematics. With the notable exception of three transiting planet systems and TZ Ari, all known planet hosts in this sample have Prot≳15P_{\rm rot} \gtrsim 15 d. This indicates that important limitations need to be overcome before the radial velocity technique can be routinely used to detect and study planets around young and active stars.Comment: Accepted for publication in A&

    A second planet transiting LTT 1445A and a determination of the masses of both worlds

    Get PDF
    K.H. acknowledges support from STFC grant ST/R000824/1.LTT 1445 is a hierarchical triple M-dwarf star system located at a distance of 6.86 pc. The primary star LTT 1445A (0.257 M⊙) is known to host the transiting planet LTT 1445Ab with an orbital period of 5.36 days, making it the second-closest known transiting exoplanet system, and the closest one for which the host is an M dwarf. Using Transiting Exoplanet Survey Satellite data, we present the discovery of a second planet in the LTT 1445 system, with an orbital period of 3.12 days. We combine radial-velocity measurements obtained from the five spectrographs, Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, High Accuracy Radial Velocity Planet Searcher, High-Resolution Echelle Spectrometer, MAROON-X, and Planet Finder Spectrograph to establish that the new world also orbits LTT 1445A. We determine the mass and radius of LTT 1445Ab to be 2.87 ± 0.25 M⊕ and 1.304-0.060+0.067 R⊕, consistent with an Earth-like composition. For the newly discovered LTT 1445Ac, we measure a mass of 1.54-0.19+0.20 M⊕ and a minimum radius of 1.15 R⊕, but we cannot determine the radius directly as the signal-to-noise ratio of our light curve permits both grazing and nongrazing configurations. Using MEarth photometry and ground-based spectroscopy, we establish that star C (0.161 M⊙) is likely the source of the 1.4 day rotation period, and star B (0.215 M⊙) has a likely rotation period of 6.7 days. We estimate a probable rotation period of 85 days for LTT 1445A. Thus, this triple M-dwarf system appears to be in a special evolutionary stage where the most massive M dwarf has spun down, the intermediate mass M dwarf is in the process of spinning down, while the least massive stellar component has not yet begun to spin down.Publisher PDFPeer reviewe
    corecore