30 research outputs found
Addressing adverse synergies between chemical and biological pollutants at schoolsâThe âSynAir-Gâ hypothesis
While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the âpollutantâ definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAirâG is a European Commissionâfunded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAirâG hypothesis, and describe its background and objectives
Inactivation of murine norovirus by chemical biocides on stainless steel
<p>Abstract</p> <p>Background</p> <p>Human norovirus (NoV) causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV) as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces.</p> <p>Methods</p> <p>The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA) or glutaraldehyde (GDA) for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells.</p> <p>Results</p> <p>PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v)] and 1-propanol [30% (v/v)] were able to inactivate MNV under clean conditions (0.03% BSA) on the carriers by â„ 4 log<sub>10 </sub>within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v). Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes).</p> <p>Conclusion</p> <p>Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces.</p
A Retrospective Evaluation of Risk of Peripartum Cardiac Dysfunction in Survivors of Childhood, Adolescent and Young Adult Malignancies
Long-term survivors of childhood, adolescent and young adult (AYA) malignancies with past exposure to potentially cardiotoxic treatments are at risk of peripartum cardiac dysfunction. Incidence and risk factors for peripartum cardiac dysfunction and maternal cardiac outcomes in this population were investigated. Eligible long-term survivors were aged <30 years at cancer diagnosis, with â„1 pregnancy occurring â„5 years after diagnosis. "Peripartum" cardiac events were defined as occurring within pregnancy or â€5months after delivery. Cardiac events were classified "symptomatic" or "subclinical". "Peripartum cardiomyopathy" (PPCM) was defined as symptomatic dysfunction without prior cardiac dysfunction. Of 64 eligible women, 5 (7.8%) had peripartum cardiac events: 3 symptomatic, 2 subclinical. Of 110 live births, 2 (1.8%, 95% CI 0.2-6.4) were defined as PPCM: Significantly greater than the published general population incidence of 1:3000 (p < 0.001), representing a 55-fold (95% CI 6.6-192.0) increased risk. Risk factor analyses were hypothesis-generating, revealing younger age at cancer diagnosis and higher anthracycline dose. Postpartum, cardiac function of 4 women (80%) failed to return to baseline. In conclusion, peripartum cardiac dysfunction is an uncommon but potentially serious complication in long-term survivors of paediatric and AYA malignancies previously treated with cardiotoxic therapies. Peripartum cardiac assessment is strongly recommended for at-risk patients
MOVPE-growth and characterization of GaAs on Si for photovoltaic devices
In this paper, we describe the growth of GaAs on Si-substrates by low-pressure MOVPE for photovoltaic applications. The layers were characterized by double-crystal X-ray diffractometry, low-temperature photoluminescence, deep-level transient spectroscopy and transmission electron microscopy. We have grown GaAs layers using the two-step method, which gave dislocation densities of 2x10"7 cm"-"2. Dislocation density reduction was achieved by in-situ thermal annealing to 8x10"6 cm"-"2. Strained-layer superlattices could not improve the quality. Low-temperature growth (TCG) resulted in a further improvement of the layers (4x10"6 cm"-"2). Corresponding to these results, solar cells grown with these techniques have shown best efficiencies of 11.5% when the TCG was applied. (orig.)Available from TIB Hannover: D.Dt.F. QN1(6,47) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman