47 research outputs found

    Application of biostimulant products and biological control agents in sustainable viticulture: A review

    Get PDF
    Current and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing. Biostimulant and biocontrol products are often applied in organic vineyards and can reduce the synthetic fertilizer, pesticide, and fungicide requirements of a vineyard. Plant growth promotion following application is also observed under a variety of challenging conditions associated with global warming. This paper reviews different groups of biostimulants and their effects on viticulture, including microorganisms, protein hydrolysates, humic acids, pyrogenic materials, and seaweed extracts. Of special interest are biostimulants with utility in protecting plants against the effects of climate change, including drought and heat stress. While many beneficial effects have been reported following the application of these materials, most studies lack a mechanistic explanation, and important parameters are often undefined (e.g., soil characteristics and nutrient availability). We recommend an increased study of the underlying mechanisms of these products to enable the selection of proper biostimulants, application methods, and dosage in viticulture. A detailed understanding of processes dictating beneficial effects in vineyards following application may allow for biostimulants with increased efficacy, uptake, and sustainability.KJ wishes to acknowledge financial support (3710473400); MS-M thanks to RTI2018-099417-B-I00 (Spanish Ministry of Science, Innovation and Universities cofunded with EU FEDER funds); JB wish to acknowledge the Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico/Brasil (CNPQ process number 309477/2021-2); RO-H is supported by the RamĂłn y Cajal program from the MICINN (RYC-2017 22032), PAIDI 2020 (Ref. 20_00323), AEI GGOO 2020 (GOPC-CA-20-0001), “JosĂ© Castillejo” program from the “Ministerio de Universidades” (CAS21/00125) and PID2019-106004RA-I00/AEI/10.13039/501100011033. SM and GT thanks to Ministerio de Ciencia e InnovaciĂłn (grant PID2020-114330GB-100). PAIDI2020 from Junta de AndalucĂ­a, grant P18-RT-1401 to SM, MD, and GT is also acknowledged. GT acknowledge the support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)

    Calcium ion currents mediating oocyte maturation events

    Get PDF
    During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed

    Variability and trait‐specific accessions for grain yield and nutritional traits in germplasm of little millet ( Panicum sumatrense Roth. Ex. Roem. & Schult.)

    Get PDF
    Little millet (Panicum sumatrense Roth. Ex. Roem. & Schult.), a member of the grass family Poaceae, is native to India. It is nutritionally superior to major cereals, grows well on marginal lands, and can withstand drought and waterlogging conditions. Two-hundred diverse little millet landraces were characterized to assess variability for agronomic and nutritional traits and identify promising accessions. Highly significant variabilitywas found for all the agronomic and grain nutrient traits. Accessions of robusta were high yielding whereas those of nana were rich in grain nutrients. About 80% of the accessions showed consistent protein and zinc (Zn) contents whereas iron (Fe) and calcium (Ca) contents were less consistent (29.5 and 63.5%, respectively) over 2 yr. Promising trait-specific accessions were identified for greater seed weight (10 accessions), high grain yield (15), high biomass yield (15), and consistently high grain nutrients (30) over 2 yr (R2 = .69–.74, P ≀ .0001). A few accessions showed consistently high for two or more nutrients (IPmr 449 for Fe, Zn, Ca, and protein; IPmr 981 for Zn and protein). Five accessions (IPmr 855, 974, 877, 897, 767) were high yielding and also rich in Ca. Consumption of 100 g of little millet grains can potentially contribute to the recommended dietary allowance of up to 28% Fe, 37% Zn, and 27% protein. Multilocation evaluation of the promising accessions across different soil types, fertility levels, and climatic conditions would help to identify valuable accessions for direct release as a cultivar or use in little millet improvement

    Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum

    Full text link
    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes

    North American Wild Relatives of Grain Crops

    Get PDF
    The wild-growing relatives of the grain crops are useful for long-term worldwide crop improvement research. There are neglected examples that should be accessioned as living seeds in gene banks. Some of the grain crops, amaranth, barnyard millet, proso millet, quinoa, and foxtail millet, have understudied unique and potentially useful crop wild relatives in North America. Other grain crops, barley, buckwheat, and oats, have fewer relatives in North America that are mostly weeds from other continents with more diverse crop wild relatives. The expanding abilities of genomic science are a reason to accession the wild species since there are improved ways to study evolution within genera and make use of wide gene pools. Rare wild species, especially quinoa relatives in North American, should be acquired by gene banks in cooperation with biologists that already study and conserve at-risk plant populations. Many of the grain crop wild relatives are weeds that have evolved herbicide resistance that could be used in breeding new herbicide-resistant cultivars, so well-documented examples should be accessioned and also vouchered in gene banks

    La citrulline réoriente les flux énergétiques au profit de la synthÚse protéique musculaire

    No full text
    CommunicationInternational audienceLa citrulline est connue pour stimuler la synthĂšse protĂ©ique musculaire. Or, celle-ci a un coĂ»t Ă©nergĂ©tique Ă©levĂ© et aucune donnĂ©e n’est disponible afin de savoir si la citrulline modifie en parallĂšle les flux Ă©nergĂ©tiques entre les diffĂ©rentes composantes les plus Ă©nergivores (synthĂšse protĂ©ique, synthĂšse d’ADN/ARN et pompes Na+/K+). Ainsi, nous nous sommes proposĂ©s de dĂ©terminer l’effet de la citrulline sur la synthĂšse protĂ©ique et, simultanĂ©ment, sur le mĂ©tabolisme Ă©nergĂ©tique
    corecore