37 research outputs found

    Spectrometer for Hard X-Ray Free Electron Laser Based on Diffraction Focusing

    Full text link
    X-ray free electron lasers (XFELs) generate sequences of ultra-short, spatially coherent pulses of x-ray radiation. We propose the diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E≈2×10−6\Delta E/E\approx 2\times 10^{-6}. This is much better than for most modern x-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from the metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. We show that the DFS can be used in a wide energy range from 5 keV to 20 keV.Comment: 9 pages, 8 figures, 2 table

    Theoretical study of electronic damage in single particle imaging experiments at XFELs for pulse durations 0.1 - 10 fs

    Full text link
    X-ray free-electron lasers (XFELs) may allow to employ the single particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here, we study the effect of electronic damage on the SPI at pulse durations from 0.1 fs to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than 101310^{13}-101510^{15} photons/μ\mum2^2 (depending on the photon energy and pulse duration) the diffracted signal saturates and does not increase further. A significant gain in the signal is obtained by reducing the pulse duration from 10 fs to 1 fs. Pulses below 1 fs duration do not give a significant gain in the scattering signal in comparison with 1 fs pulses. We also study the limits imposed on SPI by Compton scattering.Comment: 35 pages, 9 figures, 1 table, 2 appendixes, 45 reference

    Spatial properties of π−π\pi-\pi conjugated network in semicrystalline polymer thin films studied by intensity x-ray cross-correlation functions

    Full text link
    We present results of x-ray study of spatial properties of π−π\pi-\pi conjugated networks in polymer thin films. We applied the x-ray cross-correlation analysis to x-ray scattering data from blends of poly(3-hexylthiophene) (P3HT) and gold nanoparticles. The Fourier spectra of the intensity cross-correlation functions for different films contain non-zero components of orders n=2,4n=2,4 and 66 measuring the degree of structural order in the system.Comment: 6 pages, 2 figures, Proceedings ICXOM22 Conference, 2-6 September 2013, Hamburg, German

    Hydrodynamic Compaction and Sintering of Titanium Filters

    Get PDF
    This paper describes the development of an equipment for hydrodynamic compaction for production of porous permeable materials and compares the process with the more widely known hydrostatic process. Technical design data, mathematical expressions involved, effect of operating parameters on quality of the sintered product have been discussed

    Intensity interferometry of single x-ray pulses from a synchrotron storage ring

    Full text link
    We report on measurements of second-order intensity correlations at the high brilliance storage ring PETRA III using a prototype of the newly developed Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function was measured simultaneously at different spatial separations that allowed to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell-model.Comment: 16 pages, 6 figures, 42 reference

    Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry

    Full text link
    We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and 20.8 nm. We determined the 2-nd order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain complicated behaviour of the 2-nd order intensity correlation function we developed advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in most experiments several beams were present in radiating field and in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of the FEL radiation.Comment: 29 pages, 14 figures, 3 table

    Characterization of Spatial Coherence of Synchrotron Radiation with Non-Redundant Arrays of Apertures

    Full text link
    We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring as a function of different beam parameters. To verify the results obtained with the NRAs additional Young's double pinhole experiments were conducted and show good agreement.Comment: 15 pages, 6 figures, 2 tables, 42 reference

    Seeded x-ray free-electron laser generating radiation with laser statistical properties

    Full text link
    The invention of optical lasers led to a revolution in the field of optics and even to the creation of completely new fields of research such as quantum optics. The reason was their unique statistical and coherence properties. The newly emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. Most existing FELs are highly spatially coherent but in spite of their name, they behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The first steps have been taken towards exploiting the first-order coherence of FELs, and the present work opens the way to quantum optics experiments that strongly rely on high-order statistical properties of the radiation.Comment: 24 pages, 10 figures, 37 reference
    corecore