7,567 research outputs found
How young people from culturally and linguistically diverse backgrounds experience mental health: some insights for mental health nurses
This article reports on a part of a study which looked at the mental health of
culturally and linguistically diverse (CALD) young people. The research sought to learn
from CALD young people, carers, and service providers experiences relevant to the
mental health of this group of young people. The ultimate goal was to gain insights that
would inform government policy, service providers, ethnic communities and most
importantly the young people themselves. To this end, qualitative interviews were
undertaken with 123 CALD young people, 41 carers and 14 mental health service
providers in Queensland, Western Australia and South Australia.
Only one aspect of the study will be dealt with here, namely the views of the
young CALD participants, which included risk factors, coping strategies and
recommendations about how they could be supported in their struggle to maintain
mental health. One of the most important findings of the study relates to the resilience
of these young people and an insight into the strategies that they used to cope. The
efforts of these young people to assist us in our attempts to understand their situation
deserve to be rewarded by improvements in the care that we provide. To this end this
article sets out to inform mental health nurses of the results of the study so that they will
be in a position to better understand the needs and strengths of their CALD clients and
be in a better position to work effectively with them
Compact Toroidal Ion Trap Design and Optimization
We present the design of a new type of compact toroidal, or "halo", ion trap.
Such traps may be useful for mass spectrometry, studying small Coulomb cluster
rings, quantum information applications, or other quantum simulations where a
ring topology is of interest. We present results from a Monte Carlo
optimization of the trap design parameters using finite-element analysis
simulations that minimizes higher-order anharmonic terms in the trapping
pseudopotential, while maintaining complete control over ion placement at the
pseudopotential node in 3D using static bias fields. These simulations are
based on a practical electrode design using readily-available parts, yet can be
easily scaled to any size trap with similar electrode spacings. We also derive
the conditions for a crystal phase transition for two ions in the compact halo
trap, the first non-trivial phase transition for Coulomb crystals in this
geometry.Comment: 8 pages, 9 figure
Strain-Modified RKKY Interaction in Carbon Nanotubes
For low-dimensional metallic structures, such as nanotubes, the exchange
coupling between localized magnetic dopants is predicted to decay slowly with
separation. The long-range character of this interaction plays a significant
role in determining the magnetic order of the system. It has previously been
shown that the interaction range depends on the conformation of the magnetic
dopants in both graphene and nanotubes. Here we examine the RKKY interaction in
carbon nanotubes in the presence of uniaxial strain for a range of different
impurity configurations. We show that strain is capable of amplifying or
attenuating the RKKY interaction, significantly increasing certain interaction
ranges, and acting as a switch: effectively turning on or off the interaction.
We argue that uniaxial strain can be employed to significantly manipulate
magnetic interactions in carbon nanotubes, allowing an interplay between
mechanical and magnetic properties in future spintronic devices. We also
examine the dimensional relationship between graphene and nanotubes with
regards to the decay rate of the RKKY interaction.Comment: 7 pages, 6 figures, submitte
Relaxation dynamics of the toric code in contact with a thermal reservoir: Finite-size scaling in a low temperature regime
We present an analysis of the relaxation dynamics of finite-size topological
qubits in contact with a thermal bath. Using a continuous-time Monte Carlo
method, we explicitly compute the low-temperature nonequilibrium dynamics of
the toric code on finite lattices. In contrast to the size-independent bound
predicted for the toric code in the thermodynamic limit, we identify a
low-temperature regime on finite lattices below a size-dependent crossover
temperature with nontrivial finite-size and temperature scaling of the
relaxation time. We demonstrate how this nontrivial finite-size scaling is
governed by the scaling of topologically nontrivial two-dimensional classical
random walks. The transition out of this low-temperature regime defines a
dynamical finite-size crossover temperature that scales inversely with the log
of the system size, in agreement with a crossover temperature defined from
equilibrium properties. We find that both the finite-size and
finite-temperature scaling are stronger in the low-temperature regime than
above the crossover temperature. Since this finite-temperature scaling competes
with the scaling of the robustness to unitary perturbations, this analysis may
elucidate the scaling of memory lifetimes of possible physical realizations of
topological qubits.Comment: 14 Pages, 13 figure
Observations on the vibration of axially-tensioned elastomeric pipes conveying fluids
A study of the effect of axial tension on the vibration of a single-span elastomeric pipe clamped at both ends conveying fluid has been carried out both experimentally and theoretically. A new mathematical model using a penalty function technique and the method of kinematic correction and fictitious loads has been developed. The influence of flowing fluid and axial tension on natural frequencies and mode shapes of the system has been described using this model and compared with experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe has also been investigated for varying flow velocities and initial axial tensions
Extraordinary behavioral entrainment following circadian rhythm bifurcation in mice.
The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (<0.1 lux), rather than completely dark nights, permits expression of an altered circadian waveform wherein mice in light/dark/light/dark (LDLD) cycles "bifurcate" their rhythms into two rest and activity intervals per 24 h. Secondly, this bifurcated state enables mice to adopt stable activity rhythms under 15 or 30 h days (LDLD T15/T30), well beyond conventional limits of entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions
Benchmarking high fidelity single-shot readout of semiconductor qubits
Determination of qubit initialisation and measurement fidelity is important
for the overall performance of a quantum computer. However, the method by which
it is calculated in semiconductor qubits varies between experiments. In this
paper we present a full theoretical analysis of electronic single-shot readout
and describe critical parameters to achieve high fidelity readout. In
particular, we derive a model for energy selective state readout based on a
charge detector response and examine how to optimise the fidelity by choosing
correct experimental parameters. Although we focus on single electron spin
readout, the theory presented can be applied to other electronic readout
techniques in semiconductors that use a reservoir.Comment: 19 pages, 8 figure
- …