7,567 research outputs found

    How young people from culturally and linguistically diverse backgrounds experience mental health: some insights for mental health nurses

    Get PDF
    This article reports on a part of a study which looked at the mental health of culturally and linguistically diverse (CALD) young people. The research sought to learn from CALD young people, carers, and service providers experiences relevant to the mental health of this group of young people. The ultimate goal was to gain insights that would inform government policy, service providers, ethnic communities and most importantly the young people themselves. To this end, qualitative interviews were undertaken with 123 CALD young people, 41 carers and 14 mental health service providers in Queensland, Western Australia and South Australia. Only one aspect of the study will be dealt with here, namely the views of the young CALD participants, which included risk factors, coping strategies and recommendations about how they could be supported in their struggle to maintain mental health. One of the most important findings of the study relates to the resilience of these young people and an insight into the strategies that they used to cope. The efforts of these young people to assist us in our attempts to understand their situation deserve to be rewarded by improvements in the care that we provide. To this end this article sets out to inform mental health nurses of the results of the study so that they will be in a position to better understand the needs and strengths of their CALD clients and be in a better position to work effectively with them

    Compact Toroidal Ion Trap Design and Optimization

    Full text link
    We present the design of a new type of compact toroidal, or "halo", ion trap. Such traps may be useful for mass spectrometry, studying small Coulomb cluster rings, quantum information applications, or other quantum simulations where a ring topology is of interest. We present results from a Monte Carlo optimization of the trap design parameters using finite-element analysis simulations that minimizes higher-order anharmonic terms in the trapping pseudopotential, while maintaining complete control over ion placement at the pseudopotential node in 3D using static bias fields. These simulations are based on a practical electrode design using readily-available parts, yet can be easily scaled to any size trap with similar electrode spacings. We also derive the conditions for a crystal phase transition for two ions in the compact halo trap, the first non-trivial phase transition for Coulomb crystals in this geometry.Comment: 8 pages, 9 figure

    The Ancient Brehon Laws of Ireland

    Get PDF

    The Ancient Brehon Laws of Ireland

    Get PDF

    Strain-Modified RKKY Interaction in Carbon Nanotubes

    Get PDF
    For low-dimensional metallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the RKKY interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon nanotubes, allowing an interplay between mechanical and magnetic properties in future spintronic devices. We also examine the dimensional relationship between graphene and nanotubes with regards to the decay rate of the RKKY interaction.Comment: 7 pages, 6 figures, submitte

    Relaxation dynamics of the toric code in contact with a thermal reservoir: Finite-size scaling in a low temperature regime

    Get PDF
    We present an analysis of the relaxation dynamics of finite-size topological qubits in contact with a thermal bath. Using a continuous-time Monte Carlo method, we explicitly compute the low-temperature nonequilibrium dynamics of the toric code on finite lattices. In contrast to the size-independent bound predicted for the toric code in the thermodynamic limit, we identify a low-temperature regime on finite lattices below a size-dependent crossover temperature with nontrivial finite-size and temperature scaling of the relaxation time. We demonstrate how this nontrivial finite-size scaling is governed by the scaling of topologically nontrivial two-dimensional classical random walks. The transition out of this low-temperature regime defines a dynamical finite-size crossover temperature that scales inversely with the log of the system size, in agreement with a crossover temperature defined from equilibrium properties. We find that both the finite-size and finite-temperature scaling are stronger in the low-temperature regime than above the crossover temperature. Since this finite-temperature scaling competes with the scaling of the robustness to unitary perturbations, this analysis may elucidate the scaling of memory lifetimes of possible physical realizations of topological qubits.Comment: 14 Pages, 13 figure

    Observations on the vibration of axially-tensioned elastomeric pipes conveying fluids

    Get PDF
    A study of the effect of axial tension on the vibration of a single-span elastomeric pipe clamped at both ends conveying fluid has been carried out both experimentally and theoretically. A new mathematical model using a penalty function technique and the method of kinematic correction and fictitious loads has been developed. The influence of flowing fluid and axial tension on natural frequencies and mode shapes of the system has been described using this model and compared with experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe has also been investigated for varying flow velocities and initial axial tensions

    Extraordinary behavioral entrainment following circadian rhythm bifurcation in mice.

    Get PDF
    The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (<0.1 lux), rather than completely dark nights, permits expression of an altered circadian waveform wherein mice in light/dark/light/dark (LDLD) cycles "bifurcate" their rhythms into two rest and activity intervals per 24 h. Secondly, this bifurcated state enables mice to adopt stable activity rhythms under 15 or 30 h days (LDLD T15/T30), well beyond conventional limits of entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions

    Benchmarking high fidelity single-shot readout of semiconductor qubits

    Full text link
    Determination of qubit initialisation and measurement fidelity is important for the overall performance of a quantum computer. However, the method by which it is calculated in semiconductor qubits varies between experiments. In this paper we present a full theoretical analysis of electronic single-shot readout and describe critical parameters to achieve high fidelity readout. In particular, we derive a model for energy selective state readout based on a charge detector response and examine how to optimise the fidelity by choosing correct experimental parameters. Although we focus on single electron spin readout, the theory presented can be applied to other electronic readout techniques in semiconductors that use a reservoir.Comment: 19 pages, 8 figure
    • …
    corecore