5,666 research outputs found

    Compact Toroidal Ion Trap Design and Optimization

    Full text link
    We present the design of a new type of compact toroidal, or "halo", ion trap. Such traps may be useful for mass spectrometry, studying small Coulomb cluster rings, quantum information applications, or other quantum simulations where a ring topology is of interest. We present results from a Monte Carlo optimization of the trap design parameters using finite-element analysis simulations that minimizes higher-order anharmonic terms in the trapping pseudopotential, while maintaining complete control over ion placement at the pseudopotential node in 3D using static bias fields. These simulations are based on a practical electrode design using readily-available parts, yet can be easily scaled to any size trap with similar electrode spacings. We also derive the conditions for a crystal phase transition for two ions in the compact halo trap, the first non-trivial phase transition for Coulomb crystals in this geometry.Comment: 8 pages, 9 figure

    Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging

    Get PDF
    Background: The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. Results: The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. Conclusions: The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics

    The Campbell Collaboration’s systematic review of school-based anti-bullying interventions does not meet mandatory methodological standards

    Get PDF
    Background Many published reviews do not meet the widely accepted PRISMA standards for systematic reviews and meta-analysis. Campbell Collaboration and Cochrane reviews are expected to meet even more rigorous standards, but their adherence to these standards is uneven. For example, a newly updated Campbell systematic review of school-based anti-bullying interventions does not appear to meet many of the Campbell Collaboration’s mandatory methodological standards. Issues In this commentary, we document methodological problems in the Campbell Collaboration\u27s new school-based anti-bullying interventions review, including (1) unexplained deviations from the protocol; (2) inadequate documentation of search strategies; (3) inconsistent reports on the number of included studies; (4) undocumented risk of bias ratings; (5) assessments of selective outcome reporting bias that are not transparent, not replicable, and appear to systematically underestimate risk of bias; (6) unreliable assessments of risk of publication bias; (7) use of a composite scale that conflates distinct risks of bias; and (8) failure to consider issues related to the strength of the evidence and risks of bias in interpreting results and drawing conclusions. Readers who are unaware of these problems may place more confidence in this review than is warranted. Campbell Collaboration editors declined to publish our comments and declined to issue a public statement of concern about this review. Conclusions Systematic reviews are expected to use transparent methods and follow relevant methodological standards. Readers should be concerned when these expectations are not met, because transparency and rigor enhance the trustworthiness of results and conclusions. In the tradition of Donald T. Campbell, there is need for more public debate about the methods and conclusions of systematic reviews, and greater clarity regarding applications of (and adherence to) published standards for systematic reviews

    Missing Mechanisms of Manipulation in the EU AI Act

    Get PDF
    The European Union Artificial Intelligence (AI) Act proposes to ban AI systems that ”manipulate persons through subliminal techniques or exploit the fragility of vulnerable individuals, and could potentially harm the manipulated individual or third person”. This article takes the perspective of cognitive psychology to analyze and understand what algorithmic manipulation consists of, who vulnerable individuals may be, and what is considered as harm. Subliminal techniques are expanded with concepts from behavioral science and the study of preference change. Individual psychometric differences which can be exploited are used to expand the concept of vulnerable individuals. The concept of harm is explored beyond physical and psychological harm to consider harm to one’s time and right to an un-manipulated opinion. The paper offers policy recommendations that extend from the paper’s analyses

    Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging : comparison of three clinical cases

    Get PDF
    Background: As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. Methods: In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. Results: The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2 mmHg is consistent with reported data. Conclusion: We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. (C) 2016 Elsevier Ltd. All rights reserved

    Melatonin Chimeras Alter Reproductive Development and Photorefractoriness in Siberian Hamsters

    Full text link
    Nightly melatonin (MEL) durations > 8 h provoke gonadal regression and decreases in body mass, whereas signals < 7 h stimulate gonadal and somatic growth in male Siberian hamsters. The authors sought to determine the minimum frequency of short MEL signals sufficient to induce the long-day phenotype in several photoperiodic traits. D,L-propranolol (hereafter propranolol) injections shortened MEL signals on the night of treatment without altering MEL on the subsequent night; this permitted interpolation of short MEL signals at variable frequencies against a background of long MEL signals (chimeras). Hamsters kept in short days (10 h light/day, 10L) were injected with propranolol 6 h after dark onset for 28 consecutive weeks beginning at 30 days of age (Week 0) either every other day or once every 3, 6, or 9 days. Control animals were injected with saline or with propranolol during the light phase or were transferred to long days (16L) at Week 0. Hamsters in 16L underwent rapid gonadal development and increases in body mass and displayed summer pelage color, as did hamsters treated with propranolol every other day. Animals treated with propranolol less frequently than every other day uniformly maintained undeveloped gonads and winter-like body weights, but pelage color becameproportionately darker with increased frequency of propranolol treatments. The onset of spontaneous testicular development in 10L was unaffected by propranolol injections. After termination of injections at Week 28, testicular regression was not observed in most 10L animals that previously had undergone spontaneous testicular development; however, 40% of hamsters that had been injected with propranolol every 3rd night did manifest the winter phenotype after Week 28. In an alternating sequence, short MEL signals completely override long signals and induce the summer phenotype. Threshold frequencies differ for MEL stimulation of long-day pelage and gonadal phenotypes. The timing and development of refractoriness to MEL does not depend in any simple manner on the number of long MEL signals or on the accumulation of a reaction product produced by long, and depleted by short, MEL signals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67291/2/10.1177_074873098129000345.pd

    Multimodal image analysis and subvalvular dynamics in ischemic mitral regurgitation

    Get PDF
    Background: The exact geometric pathogenesis of leaflet tethering in ischemic mitral regurgitation (IMR) and the relative contribution of each component of the mitral valve complex (MVC) remain largely unknown. In this study, we sought to further elucidate mitral valve (MV) leaflet remodeling and papillary muscle dynamics in an ovine model of IMR with magnetic resonance imaging (MRI) and 3-dimensional echocardiography (3DE). Methods: Multimodal imaging combining 3DE and MRI was used to analyze the MVC at baseline, 30 minutes post–myocardial infarction (MI), and 12 weeks post-MI in ovine IMR models. Advanced 3D imaging software was used to trace the MVC from each modality, and the tracings were verified against resected specimens. Results: 3DE MV remodeling was regionally heterogenous and observed primarily in the anterior leaflet, with significant increases in surface area, especially in A2 and A3. The posterior leaflet was significantly shortened in P2 and P3. Mean posteromedial papillary muscle (PMPM) volume was decreased from 1.9 ± 0.2 cm3 at baseline to 0.9 ± 0.3 cm3 at 12 weeks post-MI (P <.05). At 12 weeks post-MI, the PMPM was predominately displaced horizontally and outward along the intercommissural axis with minor apical displacement. The subvalvular contribution to tethering is a combination of unilateral movement, outward displacement, and degeneration of the PMPM. These findings have led to a proposed new framework for characterizing PMPM dynamics in IMR. Conclusions: This study provides new insights into the complex interrelated and regionally heterogenous valvular and subvalvular mechanisms involved in the geometric pathogenesis of IMR tethering
    • …
    corecore