981 research outputs found
Toward Realistic Intersecting D-Brane Models
We provide a pedagogical introduction to a recently studied class of
phenomenologically interesting string models, known as Intersecting D-Brane
Models. The gauge fields of the Standard-Model are localized on D-branes
wrapping certain compact cycles on an underlying geometry, whose intersections
can give rise to chiral fermions. We address the basic issues and also provide
an overview of the recent activity in this field. This article is intended to
serve non-experts with explanations of the fundamental aspects, and also to
provide some orientation for both experts and non-experts in this active field
of string phenomenology.Comment: 85 pages, 8 figures, Latex, Bibtex, v2: refs added, typos correcte
Coupling of hard dimers to dynamical lattices via random tensors
We study hard dimers on dynamical lattices in arbitrary dimensions using a
random tensor model. The set of lattices corresponds to triangulations of the
d-sphere and is selected by the large N limit. For small enough dimer
activities, the critical behavior of the continuum limit is the one of pure
random lattices. We find a negative critical activity where the universality
class is changed as dimers become critical, in a very similar way hard dimers
exhibit a Yang-Lee singularity on planar dynamical graphs. Critical exponents
are calculated exactly. An alternative description as a system of
`color-sensitive hard-core dimers' on random branched polymers is provided.Comment: 12 page
D3 instantons in Calabi-Yau orientifolds with(out) fluxes
We investigate the instanton effect due to D3 branes wrapping a four-cycle in
a Calabi-Yau orientifold with D7 branes. We study the condition for the nonzero
superpotentials from the D3 instantons. For that matter we work out the zero
mode structures of D3 branes wrapping a four-cycle both in the presence of the
fluxes and in the absence of the fluxes. In the presence of the fluxes, the
condition for the nonzero superpotential could be different from that without
the fluxes. We explicitly work out a simple example of the orientifold of with a suitable flux to show such behavior. The effects of
D3-D7 sectors are interesting and give further constraints for the nonzero
superpotential. In a special configuration where D3 branes and D7 branes wrap
the same four-cycle, multi-instanton calculus of D3 branes could be reduced to
that of a suitable field theory. The structure of D5 instantons in Type I
theory is briefly discussed.Comment: 17 pages; Typos corrected, arguments improved and references adde
Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap
In eukaryotes the majority of mRNAs have an m7G cap that is added cotranscriptionally and that plays an important role in many aspects of mRNA metabolism. The nuclear cap-binding complex (CBC; consisting of CBP20 and CBP80) mediates the stimulatory functions of the cap in pre-mRNA splicing, 3' end formation, and U snRNA export. As little is known about how nuclear CBC mediates the effects of the cap in higher eukaryotes, we have characterized proteins that interact with CBC in HeLa cell nuclear extracts as potential mediators of its function. Using cross-linking and coimmunoprecipitation, we show that eukaryotic translation initiation factor 4G (eIF4G), in addition to its function in the cytoplasm, is a nuclear CBC-interacting protein. We demonstrate that eIF4G interacts with CBC in vitro and that, in addition to its cytoplasmic localization, there is a significant nuclear pool of eIF4G in mammalian cells in vivo. Immunoprecipitation experiments suggest that, in contrast to the cytoplasmic pool, much of the nuclear eIF4G is not associated with eIF4E (translation cap binding protein of eIF4F) but is associated with CBC. While eIF4G stably associates with spliceosomes in vitro and shows close association with spliceosomal snRNPs and splicing factors in vivo, depletion studies show that it does not participate directly in the splicing reaction. Taken together the data indicate that nuclear eIF4G may be recruited to pre-mRNAs via its interaction with CBC and accompanies the mRNA to the cytoplasm, facilitating the switching of CBC for eIF4F. This may provide a mechanism to couple nuclear and cytoplasmic functions of the mRNA cap structure
Racetrack Inflation
We develop a model of eternal topological inflation using a racetrack
potential within the context of type IIB string theory with KKLT volume
stabilization. The inflaton field is the imaginary part of the K\"ahler
structure modulus, which is an axion-like field in the 4D effective field
theory. This model does not require moving branes, and in this sense it is
simpler than other models of string theory inflation. Contrary to
single-exponential models, the structure of the potential in this example
allows for the existence of saddle points between two degenerate local minima
for which the slow-roll conditions can be satisfied in a particular range of
parameter space. We conjecture that this type of inflation should be present in
more general realizations of the modular landscape. We also consider
`irrational' models having a dense set of minima, and discuss their possible
relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to
appear in JHE
Characterization of Ku702–NLS as Bipartite Nuclear Localization Sequence for Non-Viral Gene Delivery
Several barriers have to be overcome in order to achieve gene expression in target cells, e.g. cellular uptake, endosomal release and translocation to the nucleus. Nuclear localization sequences (NLS) enhance gene delivery by increasing the uptake of plasmid DNA (pDNA) to the nucleus. So far, only monopartite NLS were analysed for non-viral gene delivery. In this study, we examined the characteristics of a novel bipartite NLS like construct, namely NLS Ku70. We synthesized a dimeric structure of a modified NLS from the Ku70 protein (Ku702-NLS), a nuclear transport active mutant of Ku702-NLS (s1Ku702-NLS) and a nuclear transport deficient mutant of Ku702-NLS (s2Ku702). We examined the transfection efficiency of binary Ku702-NLS/DNA and ternary Ku702-NLS/PEI/DNA gene vector complexes in vitro by using standard transfection protocols as well as the magnetofection method. The application of Ku702-NLS and s1Ku702-NLS increased gene transfer efficiency in vitro and in vivo. This study shows for the first time that the use of bipartite NLS compounds alone or in combination with cationic polymers is a promising strategy to enhance the efficiency of non-viral gene transfer
Importin α7 Is Essential for Zygotic Genome Activation and Early Mouse Development
Importin α is involved in the nuclear import of proteins. It also contributes to spindle assembly and nuclear membrane formation, however, the underlying mechanisms are poorly understood. Here, we studied the function of importin α7 by gene targeting in mice and show that it is essential for early embryonic development. Embryos lacking importin α7 display a reduced ability for the first cleavage and arrest completely at the two-cell stage. We show that the zygotic genome activation is severely disturbed in these embryos. Our findings indicate that importin α7 is a new member of the small group of maternal effect genes
Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry
Mammalian Bicaudal D2 is the missing molecular link between cytoplasmic motor proteins and the nucleus during nuclear positioning prior to the onset of mitosis
Towards reconciling structure and function in the nuclear pore complex
The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC
- …