476 research outputs found

    Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis

    Full text link
    Metformin has been linked to improve survival of patients with various cancers. There is little information on survival of glioblastoma patients after use of metformin. We assessed the association between metformin use and survival in a pooled analysis of patient data from 1,731 individuals from the randomized AVAglio, CENTRIC and CORE trials. We performed multivariate Cox analyses for overall survival (OS) and progression-free survival (PFS) comparing patients' use of metformin at baseline and/or during concomitant radiochemotherapy (TMZ/RT). Further exploratory analyses investigated the effect of metformin with a history of diabetes and nonfasting glucose levels in relation to OS or PFS of glioblastoma patients. Metformin alone or in any combination was not significantly associated with OS or PFS (at baseline, hazard ratio [HR] for OSā€‰= 0.87; 95% confidence interval [CI]ā€‰= 0.65-1.16; HR for PFSā€‰= 0.84; 95% CIā€‰= 0.64-1.10; during TMZ/RT HR for OSā€‰= 0.97; 95% CIā€‰= 0.68-1.38; HR for PFSā€‰= 1.02; 95% CIā€‰= 0.74-1.41). We found a statistically nonsignificant association of metformin monotherapy with glioblastoma survival at baseline (HR for OSā€‰= 0.68; 95% CIā€‰= 0.42-1.10; HR for PFSā€‰= 0.57; 95% CIā€‰= 0.36-0.91), but not during the TMZ/RT period (HR for OSā€‰= 0.90; 95% CIā€‰= 0.51-1.56; HR for PFSā€‰= 1.05; 95% CIā€‰= 0.64-1.73). Diabetes mellitus or increased nonfasting glucose levels were not associated with a difference in OS or PFS in our selected study population. Metformin did not prolong survival of patients with newly diagnosed glioblastoma in our analysis. Additional studies may identify patients with specific tumor characteristics that are associated with potential benefit from treatment with metformin, possibly due to metabolic vulnerabilities

    Temporal muscle thickness is an independent prognostic marker in patients with progressive glioblastoma: translational imaging analysis of the EORTC 26101 trial

    Full text link
    BACKGROUND: Temporal muscle thickness (TMT) was described as surrogate marker of skeletal muscle mass. This study aimed to evaluate the prognostic relevance of TMT in patients with progressive glioblastoma. METHODS: TMT was analyzed on cranial magnetic resonance images of 596 patients with progression of glioblastoma after radio-chemotherapy enrolled in the EORTC 26101 trial. An optimal TMT cutoff for overall survival (OS) and progression free survival (PFS) was defined in the training cohort (n=260, phase 2). Patients were grouped as "below" or "above" the TMT cutoff and associations with OS and PFS were tested using the Cox model adjusted for important risk factors. Findings were validated in a test cohort (n=308, phase 3). RESULTS: An optimal baseline TMT cutoff of 7.2 mm was obtained in the training cohort for both OS and PFS (AUC=0.64). Univariate analyses estimated a hazard ratio (HR) of 0.54 (95% CI: 0.42, 0.70, p<0.0001) for OS and a HR of 0.49 (95% CI: 0.38, 0.64, p<0.0001) for PFS for the comparison of training cohort patients above versus below the TMT cutoff. Similar results were obtained in Cox models adjusted for important risk factors with relevance in the trial for OS (HR of 0.54, 95% CI: 0.41, 0.70, p<0.0001) and PFS (HR of 0.47, 95% CI: 0.36, 0.61, p<0.0001). Results were confirmed in the validation cohort. CONCLUSION: Reduced TMT is an independent negative prognostic parameter in patients with progressive glioblastoma and may help to facilitate patient management by supporting patient stratification for therapeutic interventions or clinical trials

    Association of antidepressant drug use with outcome of patients with glioblastoma

    Get PDF
    Depressive symptoms are common among patients with glioblastoma, but patients are often not treated with antidepressants. There is only limited evidence on the association of antidepressant drug use with survival in glioblastoma. We performed a pooled analysis of patients treated within the CENTRIC, CORE, AVAglio and ACTā€IV trials to explore the relation of antidepressant drug use with progressionā€free (PFS) and overall survival (OS) at baseline, at the start of maintenance therapy and at the start of maintenance cycle 4. We further assessed the association of antidepressant drugs with seizure, cognition, fatigue and a diagnosis of depression. Among more than 1700 patients, we found no significant association between the use of antidepressants at baseline or at the start of maintenance therapy and PFS or OS. However, we found OS, but not PFS, to be significantly worse in patients using antidepressants at the start of maintenance cycle 4. After adjustment for antiepileptic drug use and despite showing a trend for increased risk, seizures were not significantly associated with antidepressant drug use, nor was there a change in mini mental state examination (MMSE) scores or fatigue by antidepressant drug use at baseline. However, there was a significant positive association between antidepressant use at the start of maintenance treatment and fatigue during maintenance treatment. The association of antidepressant use at the start of maintenance cycle 4 with inferior OS of glioblastoma patients requires independent confirmation and further study. Further prospective trials should evaluate efficacy, side effects and associations with outcome of antidepressants in glioblastoma

    MGMT Promoter Methylation Cutoff with Safety Margin for Selecting Glioblastoma Patients into Trials Omitting Temozolomide: A Pooled Analysis of Four Clinical Trials.

    Get PDF
    The methylation status of the O &lt;sup&gt;6&lt;/sup&gt; -methylguanine DNA methyltransferase (MGMT) gene promoter is predictive for benefit from temozolomide in glioblastoma (GBM). A clinically optimized cutoff was sought allowing patient selection for therapy without temozolomide, while avoiding to withhold it from patients who may potentially benefit.Experimental Design: Quantitative MGMT methylation-specific PCR data were obtained for newly diagnosed patients with GBM screened or treated with standard radiotherapy and temozolomide in four randomized trials. The pooled dataset was randomly split into a training and test dataset. The unsupervised cutoff was obtained at a 50% probability to be (un)methylated. ROC analysis identified an optimal cutoff supervised by overall survival (OS). For 4,041 patients valid MGMT results were obtained, whereof 1,725 were randomized. The unsupervised cutoff in the training dataset was 1.27 (log &lt;sub&gt;2&lt;/sub&gt; [1,000 Ɨ (MGMT+1)/ACTB]), separating unmethylated and methylated patients. The optimal supervised cutoff for unmethylated patients was -0.28 (AUC = 0.61), classifying "truly unmethylated" (ā‰¤-0.28) and "gray zone" patients (&gt;-0.28, ā‰¤1.27), the latter comprising approximately 10% of cases. In contrast, for patients with MGMT methylation (&gt;1.27) more methylation was not related to better outcome. Both methylated and gray zone patients performed significantly better for OS than truly unmethylated patients [HR = 0.35, 95% confidence interval (CI), 0.27-0.45, P &lt; 0.0001; HR = 0.58, 95% CI, 0.43-0.78, P &lt; 0.001], validated in the test dataset. The MGMT assay was highly reproducible upon retesting of 218 paired samples (R &lt;sup&gt;2&lt;/sup&gt; = 0.94). Low MGMT methylation (gray zone) may confer some sensitivity to temozolomide treatment, hence the lower safety margin should be considered for selecting patients with unmethylated GBM into trials omitting temozolomide

    Associations of levetiracetam use with the safety and tolerability profile of chemoradiotherapy for patients with newly diagnosed glioblastoma

    Full text link
    Background Levetiracetam (LEV) is one of the most frequently used antiepileptic drugs (AED) for brain tumor patients with seizures. We hypothesized that toxicity of LEV and temozolomide-based chemoradiotherapy may overlap. Methods Using a pooled cohort of patients with newly diagnosed glioblastoma included in clinical trials prior to chemoradiotherapy (CENTRIC, CORE, AVAglio) or prior to maintenance therapy (ACT-IV), we tested associations of hematologic toxicity, nausea or emesis, fatigue, and psychiatric adverse events during concomitant and maintenance treatment with the use of LEV alone or with other AED versus other AED alone or in combination versus no AED use at the start of chemoradiotherapy and of maintenance treatment. Results Of 1681 and 2020 patients who started concomitant chemoradiotherapy and maintenance temozolomide, respectively, 473 and 714 patients (28.1% and 35.3%) were treated with a LEV-containing regimen, 538 and 475 patients (32.0% and 23.5%) with other AED, and 670 and 831 patients (39.9% and 41.1%) had no AED. LEV was associated with higher risk of psychiatric adverse events during concomitant treatment in univariable and multivariable analyses (RR 1.86 and 1.88, Pā€…<ā€….001) while there were no associations with hematologic toxicity, nausea or emesis, or fatigue. LEV was associated with reduced risk of nausea or emesis during maintenance treatment in multivariable analysis (HRā€…=ā€…0.80, Pā€…=ā€….017) while there were no associations with hematologic toxicity, fatigue, or psychiatric adverse events. Conclusions LEV is not associated with reduced tolerability of chemoradiotherapy in patients with glioblastoma regarding hematologic toxicity and fatigue. Antiemetic properties of LEV may be beneficial during maintenance temozolomide

    Association of pre-radiotherapy tumour burden and overall survival in newly diagnosed glioblastoma adjusted for MGMT promoter methylation status

    Get PDF
    PURPOSE: We retrospectively evaluated the association between postoperative pre-radiotherapy tumour burden and overall survival (OS) adjusted for the prognostic value of O6^{6}-methylguanine DNA methyltransferase (MGMT) promoter methylation in patients with newly diagnosed glioblastoma treated with radio-/chemotherapy with temozolomide. MATERIALS AND METHODS: Patients were included from the CENTRIC (EORTC 26071-22072) and CORE trials if postoperative magnetic resonance imaging scans were available within a timeframe of up to 4weeks before radiotherapy, including both pre- and post-contrast T1w images and at least one T2w sequence (T2w or T2w-FLAIR). Postoperative (residual) pre-radiotherapy contrast-enhanced tumour (CET) volumes and non-enhanced T2w abnormalities (NT2A) tissue volumes were obtained by three-dimensional segmentation. Cox proportional hazard models and Kaplan Meier estimates were used to assess the association of pre-radiotherapy CET/NT2A volume with OS adjusted for known prognostic factors (age, performance status, MGMT status). RESULTS: 408 tumour (of which 270 MGMT methylated) segmentations were included. Median OS in patients with MGMT methylated tumours was 117 weeks versus 61weeks in MGMT unmethylated tumours (pĀ <Ā 0.001). When stratified for MGMT methylation status, higher CET volume (HR 1.020; 95% confidence interval CI [1.013-1.027]; pĀ <Ā 0.001) and older age (HR 1.664; 95% CI [1.214-2.281]; pĀ =Ā 0.002) were significantly associated with shorter OS while NT2A volume and performance status were not. CONCLUSION: Pre-radiotherapy CET volume was strongly associated with OS in patients receiving radio-/chemotherapy for newly diagnosed glioblastoma stratified by MGMT promoter methylation status

    MGMT Promoter Methylation Cutoff with Safety Margin for Selecting Glioblastoma Patients into Trials Omitting Temozolomide. A Pooled Analysis of Four Clinical Trials

    Full text link
    PURPOSE The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) gene promoter is predictive for benefit from temozolomide in glioblastoma. A clinically optimized cutoff was sought allowing patient selection for therapy without temozolomide, while avoiding to withhold it from patients who may potentially benefit. EXPERIMENTAL DESIGN Quantitative MGMT methylation-specific PCR data were obtained for newly diagnosed glioblastoma patients screened or treated with standard radiotherapy and temozolomide in four randomized trials. The pooled dataset was randomly split into a training and test dataset. The unsupervised cutoff was obtained at a 50% probability to be (un)methylated. Receiver operating characteristics (ROC) analysis identified an optimal cutoff supervised by overall survival (OS). RESULTS For 4041 patients valid MGMT results were obtained, whereof 1725 were randomized. The unsupervised cutoff in the training dataset was 1.27 (log2[1000x(MGMT+1)/ACTB]), separating unmethylated and methylated patients. The optimal supervised cutoff for unmethylated patients was -0.28 (AUC=0.61), classifying "truly unmethylated" (ā‰¤-0.28) and "grey zone" patients (>-0.28, ā‰¤1.27), the latter comprising ~10% of cases. In contrast, for MGMT methylated patients (>1.27) more methylation was not related to better outcome. Both methylated and grey zone patients performed significantly better for OS than truly unmethylated patients (HR=0.35, 95% CI: 0.27-0.45, p<0.0001; HR=0.58, 95% CI: 0.43-0.78, p<0.001), validated in the test dataset. The MGMT assay was highly reproducible upon retesting of 218 paired samples (R2=0.94). CONCLUSIONS Low MGMT methylation (grey zone) may confer some sensitivity to temozolomide treatment, hence the lower safety margin should be considered for selecting unmethylated glioblastoma patients into trials omitting temozolomide
    • ā€¦
    corecore