301 research outputs found

    Mechanosensitive Expression of a Lipoxygenase Gene in Wheat

    Full text link

    Preliminary effects of fertilization on ecochemical soil condition in mature spruce stands experiencing dieback in the Beskid Śla̧ski and Żywiecki Mountains, Poland

    Get PDF
    In recent years, there has been the phenomena of spruce dieback in Europe. Significant areas of spruce low mortality now cover both sides of the Polish southern border. We evaluated ecochemical parameters influencing the heavy dieback occurring in mature spruce stands in the Polish Carpathian Mountains. Dolomite, magnesite and serpentinite fertilizers were applied to experimental plots located in 100-year-old stands in the autumn of 2008. The experimental plots were located in the mid-elevational forest zone (900-950 m) on two nappes of the flysch Carpathians: Magura (Ujsoły Forest District) and Silesian (Wisła Forest District). The saturation of the studied soils demonstrates moderate resilience of soils in Wisła Forest District in relation to acid load and high flexibility of the Ujsoły soils. After application of the fertilizers, an increase of Mg, Ca and Mb was noted in the soil solution, determined in the overlaying highly acidic organic horizons through the ion-exchange buffering mechanism of highly protonated functional groups with high buffering capacity. Magnesium concentration increased following fertilization, presenting a potential improvement of forest growth capacity without the hazard of adverse side effects of liming. Aluminium stress in old spruce is unlikely, while trees in the control plots in Wisła Forest District may already be sensitive to aluminium stress. Serpentinite fertilization improved the supply of soils in magnesium without causing significant changes in the pH of the soil. Such changes in the pH were found in dolomite and magnesite fertilizer. © The Author(s) 2014

    Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds

    Get PDF
    BACKGROUND: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors

    Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo

    Get PDF
    Background: Endothelial injury is an early and enduring feature of cardiovascular disease. Inflammation and hypoxia may be responsible for this, and are often associated with the up-regulation of several transcriptional factors that include Hypoxia Inducible Factor-1 (HIF-1). Although it has been reported that HIF-1α is detectable in plasma, it is known to be unstable. Our aim was to optimize an assay for HIF-1α to be applied to in vitro and in vivo applications, and to use this assay to assess the release kinetics of HIF-1 following endothelial injury. Methods: An ELISA for the measurement of HIF in cell-culture medium and plasma was optimized, and the assay used to determine the best conditions for sample collection and storage. The results of the ELISA were validated using Western blotting and immunohistochemistry (IHC). In vitro, a standardized injury was produced in a monolayer of rat aortic endothelial cells (RAECs) and intracellular HIF-1α was measured at intervals over 24 hours. In vivo, a rat angioplasty model was used. The right carotid artery was injured using a 2F Fogarty balloon catheter. HIF-1α was measured in the plasma and in the arterial tissue (0, 1, 2, 3 and 5 days post injury). Results: The HIF-1α ELISA had a limit of detection of 2.7 pg/ mL and was linear up to 1000 pg/ mL. Between and within-assay coefficient of variation values were less than 15%. HIF-1α was unstable in cell lysates and plasma, and it was necessary to add a protease inhibitor immediately after collection, and to store samples at -800C prior to analysis. The dynamics of HIF-1α release were different for the in vitro and in vivo models. In vitro, HIF-1α reached maximum concentrations approximately 2h post injury, whereas peak values in plasma and tissues occurred approximately 2 days post injury, in the balloon injury model. Conclusion: HIF-1α can be measured in plasma, but this requires careful sample collection and storage. The carotid artery balloon injury model is associated with the transient release of HIF-1α into the circulation that probably reflects the hypoxia induced in the artery wall

    Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

    Get PDF
    Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis.By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon.We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the beta isoform of molecular chaperone HSP90

    GADD34 keeps the mTOR pathway inactivated in endoplasmic reticulum stress related autophagy

    Get PDF
    The balance of protein synthesis and proteolysis (i.e. proteostasis) is maintained by a complex regulatory network in which mTOR (mechanistic target of rapamycin serine/threonine kinase) pathway and unfolded protein response are prominent positive and negative actors. The interplay between the two systems has been revealed; however the mechanistic details of this crosstalk are largely unknown. The aim of the present study was to investigate the elements of crosstalk during endoplasmic reticulum stress and to verify the key role of GADD34 in the connection with the mTOR pathway. Here, we demonstrate that a transient activation of autophagy is present in endoplasmic reticulum stress provoked by thapsigargin or tunicamycin, which is turned into apoptotic cell death. The transient phase can be characterized by the elevation of the autophagic marker LC3II/I, by mTOR inactivation, AMP-activated protein kinase activation and increased GADD34 level. The switch from autophagy to apoptosis is accompanied with the appearance of apoptotic markers, mTOR reactivation, AMP-activated protein kinase inactivation and a decrease in GADD34. Inhibition of autophagy by 3-methyladenine shortens the transient phase, while inhibition of mTOR by rapamycin or resveratrol prolongs it. Inhibition of GADD34 by guanabenz or transfection of the cells with siGADD34 results in down-regulation of autophagy-dependent survival and a quick activation of mTOR, followed by apoptotic cell death. The negative effect of GADD34 inhibition is diminished when guanabenz or siGADD34 treatment is combined with rapamycin or resveratrol addition. These data confirm that GADD34 constitutes a mechanistic link between endoplasmic reticulum stress and mTOR inactivation, therefore promotes cell survival during endoplasmic reticulum stress. © 2016 Holczer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Hyperthermia Induces the ER Stress Pathway

    Get PDF
    The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other components of the ER stress pathway in cells exposed to 40°C.AD293 cells were exposed to 43°C heat shock to confirm inhibition of the ER stress response genes. Five mammalian cell types, including AD293 cells, were then exposed to 40°C hyperthermia for various time periods and induction of the ER stress pathway was assessed.The inhibition of the ER stress pathway by heat shock (43°C) was confirmed. In contrast cells subjected to more mild temperature elevation (40°C) showed either a partial or full ER stress pathway induction as determined by downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate adaptation to febrile hyperthermia associated with disease or infection

    Hypoxia-inducible Factor-1 Activation in Nonhypoxic Conditions: The Essential Role of Mitochondrial-derived Reactive Oxygen Species

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor for responses to low oxygen. Here we report that the generation of mitochondrial reactive oxygen species are essential for regulating HIF-1 in normal oxygen conditions in the vasculature
    corecore