451 research outputs found

    Behaviour of chromium isotopes in the eastern sub-tropical Atlantic Oxygen Minimum Zone

    Get PDF
    Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (CrT, where CrT = Cr(VI) + Cr(III)) and Cr isotope data (δ53Cr) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44–90 μmol kg−1 in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater δ53Cr, with values ranging from 1.08 to 1.72‰. Shelf CrT concentrations were slightly lower (2.21 ± 0.07 nmol kg−1) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 ± 0.07 nmol kg−1). The shelf waters also had higher δ53Cr values (1.41 ± 0.14‰ compared to 1.18 ± 0.05‰ for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of δ53Cr values (1.19 ± 0.09‰) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr(III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater δ53Cr, whereas archives of seawater δ53Cr derived from shelf sediments must be interpreted with caution

    Long-term neural and physiological phenotyping of a single human

    Get PDF
    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders

    Identity-by-Descent Mapping Identifies Major Locus for Serum Triglycerides in Amerindians Largely Explained by an APOC3 Founder Mutation

    Get PDF
    Background—Identity-by-descent (IBD) mapping using empirical estimates of IBD allele sharing may be useful for studies of complex traits in founder populations, where hidden relationships may augment the inherent genetic information that can be used for localization. Methods and Results—Through IBD mapping, using ~400,000 SNPs, of serum lipid profiles we identified a major linkage signal for triglycerides (TG) in 1,007 Pima Indians (LOD=9.23, p=3.5×10−11 on chromosome 11q). In subsequent fine-mapping and replication association studies in ~7,500 Amerindians, we determined that this signal reflects effects of a loss-of-function Ala43Thr substitution in APOC3 (rs147210663) and 3 established functional SNPs in APOA5. The association with rs147210663 was particularly strong; each copy of the Thr allele conferred 42% lower TG (β=−0.92±0.059 SD unit, p=9.6×10−55 in 4,668 Pimas and 2,793 Southwest Amerindians combined). The Thr allele is extremely rare in most global populations, but has a frequency of 2.5% in Pimas. We further demonstrated that 3 APOA5 SNPs with established functional impact could explain the association with the most well-replicated SNP (rs964184) for TG identified by genome-wide association studies (GWAS). Collectively these 4 SNPs account for 6.9% of variation in TG in Pimas (and 4.1% in Southwest Amerindians), and their inclusion in the original linkage model reduced the linkage signal to virtually null. Conclusions—APOC3/APOA5 constitutes a major locus for serum triglycerides in Amerindians, especially the Pimas, and these results provide an empirical example for the concept that population-based linkage analysis is a useful strategy to identify complex trait variants

    Genetic Variation at the FTO Locus Influences RBL2 Gene Expression

    Get PDF
    OBJECTIVE - Genome-wide association studies that compare the statistical association between thousands of DNA variations and a human trait have detected 958 loci across 127 different diseases and traits. However, these statistical associations only provide evidence for genomic regions likely to harbor a causal gene(s) and do not directly identify such genes. We combined gene variation and expression data in a human cohort to identify causal genes. RESEARCH DESIGN AND METHODS - Global gene transcription activity was obtained for each individual in a large human cohort (n = 1,240). These quantitative transcript data were tested for correlation with genotype data generated from the same individuals to identify gene expression patterns influenced by the variants. RESULTS - Variant rs8050136 lies within intron 1 of the FTO gene on chromosome 16 and marks a locus strongly associated with type 2 diabetes and obesity and widely replicated across many populations. We report that genetic variation at this locus does not influence FTO gene expression levels (P = 0.38), but is strongly correlated with expression of RBL2 (P = 2.7 × 10-5), ~270,000 base pairs distant to FTO. CONCLUSIONS - These data suggest that variants at FTO influence RBL2 gene expression at large genetic distances. This observation underscores the complexity of human transcriptional regulation and highlights the utility of large human cohorts in which both genetic variation and global gene expression data are available to identify disease genes. Expedient identification of genes mediating the effects of genome-wide association study - identified loci will enable mechanism-of-action studies and accelerate understanding of human disease processes under genetic influence. © 2010 by the American Diabetes Association

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    Serum phosphatidylinositol as a biomarker for bipolar disorder liability

    Get PDF
    Objectives Individuals with bipolar disorder (BPD) exhibit alterations in their phospholipid levels. It is unclear whether these alterations are a secondary consequence of illness state, or if phospholipids and illness risk overlap genetically. If the latter were true, then phospholipids might provide key insights into the pathophysiology of the illness. Therefore, we rank-ordered phospholipid classes by their genetic overlap with BPD risk in order to establish which class might be most informative in terms of increasing our understanding of illness pathophysiology. Methods Analyses were conducted in a sample of 558 individuals, unselected for BPD, from 38 extended pedigrees (average family size=14.79, range=2–82). We calculated a coefficient of relatedness for all family members of nine individuals with BPD in the sample (N=185); this coefficient was set to be zero in unrelated individuals (N=373). Then, under an endophenotype ranking value (ERV) approach, this scalar index was tested against 13 serum-based phospholipid concentrations in order to rank-order lipid classes by their respective overlap with BPD risk. Results The phosphatidylinositol class was significantly heritable (h2=0.26, P=6.71 × 10−05). It was the top-ranked class, and was significantly associated with BPD risk after correction for multiple testing (β=−1.18, P=2.10 × 10−03, ERV=0.49). Conclusions We identified a peripheral biomarker, serum-based phosphatidylinositol, which exhibits a significant association with BPD risk. Therefore, given that phosphatidylinositol and BPD risk share partially common etiology, it seems that this lipid class warrants further investigation, not only in terms of treatment, but also as a promising diagnostic and risk marker

    The Lipidome in Major Depressive Disorder: Shared Genetic Influence for Ether-Phosphatidylcholines, a Plasma-Based Phenotype Related to Inflammation, and Disease Risk

    Get PDF
    Background The lipidome is rapidly garnering interest in the field of psychiatry. Recent studies have implicated lipidomic changes across numerous psychiatric disorders. In particular there is growing evidence that the concentrations of several classes of lipids are altered in those diagnosed with MDD. However, for lipidomic abnormalities to be considered potential treatment targets for MDD (rather than secondary manifestations of the disease), a shared etiology between lipid concentrations and MDD should be demonstrated. Methods In a sample of 567 individuals from 37 extended pedigrees (average size 13.57 people, range = 3–80), we used mass-spectrometry lipidomic measures to evaluate the genetic overlap between twenty-three biologically distinct lipid classes and a dimensional scale of MDD. Results We found that the lipid class with the largest endophenotype ranking value (ERV, a standardized parametric measure of pleiotropy) were ether-phosphodatidylcholines (alkylphosphatidylcholine, PC(O) and alkenylphosphatidylcholine, PC(P) subclasses). Furthermore, we examined the cluster structure of the twenty-five species within the top-ranked lipid class, and the relationship of those clusters with MDD. This analysis revealed that species containing arachidonic acid generally exhibited the greatest degree of genetic overlap with MDD. Conclusions This study is the first to demonstrate a shared genetic etiology between MDD and ether-phosphatidylcholine species containing arachidonic acid, an omega-6 fatty acid that is a precursor to inflammatory mediators, such as prostaglandins. The study highlights the potential utility of the well-characterized linoleic/arachidonic acid inflammation pathway as a diagnostic marker and/or treatment target for MDD

    TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis

    Get PDF
    Aims: The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results: Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion: We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies
    corecore