1,656 research outputs found

    Single qubit decoherence under a separable coupling to a random matrix environment

    Full text link
    This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude than the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects and symmetry breaking equilibrium states.Comment: 13 pages, 7 figure

    Scattering approach to fidelity decay in closed systems and parametric level correlations

    Full text link
    This paper is based on recent work which provided an exact analytical description of scattering fidelity experiments with a microwave cavity under the variation of an antenna coupling [K\"ober et al., Phys. Rev. E 82, 036207 (2010)]. It is shown that this description can also be used to predict the decay of the fidelity amplitude for arbitrary Hermitian perturbations of a closed system. Two applications are presented: First, the known result for global perturbations is re-derived, and second, the exact analytical expression for the perturbation due to a moving S-wave scatterer is worked out. The latter is compared to measured data from microwave experiments, which have been reported some time ago. Finally, we generalize an important relation between fidelity decay and parametric level correlations to arbitrary perturbations.Comment: 20 pages, 2 figures, research article, (v2: stylistic changes, ref. added

    Integrals of monomials over the orthogonal group

    Full text link
    A recursion formula is derived which allows to evaluate invariant integrals over the orthogonal group O(N), where the integrand is an arbitrary finite monomial in the matrix elements of the group. The value of such an integral is expressible as a finite sum of partial fractions in NN. The recursion formula largely extends presently available integration formulas for the orthogonal group.Comment: 9 pages, no figure

    A trivial observation on time reversal in random matrix theory

    Full text link
    It is commonly thought that a state-dependent quantity, after being averaged over a classical ensemble of random Hamiltonians, will always become independent of the state. We point out that this is in general incorrect: if the ensemble of Hamiltonians is time reversal invariant, and the quantity involves the state in higher than bilinear order, then we show that the quantity is only a constant over the orbits of the invariance group on the Hilbert space. Examples include fidelity and decoherence in appropriate models.Comment: 7 pages 3 figure

    Fidelity amplitude of the scattering matrix in microwave cavities

    Full text link
    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the scattering fidelity is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength could be determined independently from level dynamics of the system, thus providing a parameter free agreement between theory and experiment

    Scattering fidelity in elastodynamics

    Full text link
    The recent introduction of the concept of scattering fidelity, causes us to revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the ``distortion'' of the coda of an acoustic signal is measured under temperature changes. This quantity is in fact the negative logarithm of scattering fidelity. We re-analyse their experimental data for two samples, and we find good agreement with random matrix predictions for the standard fidelity. Usually, one may expect such an agreement for chaotic systems only. While the first sample, may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is more surprising. For the first sample, the random matrix analysis yields a perturbation strength compatible with semiclassical predictions. For the cuboid the measured perturbation strength is much larger than expected, but with the fitted values for this strength, the experimental data are well reproduced.Comment: 4 page
    • …
    corecore