2,075 research outputs found

    A trivial observation on time reversal in random matrix theory

    Full text link
    It is commonly thought that a state-dependent quantity, after being averaged over a classical ensemble of random Hamiltonians, will always become independent of the state. We point out that this is in general incorrect: if the ensemble of Hamiltonians is time reversal invariant, and the quantity involves the state in higher than bilinear order, then we show that the quantity is only a constant over the orbits of the invariance group on the Hilbert space. Examples include fidelity and decoherence in appropriate models.Comment: 7 pages 3 figure

    Scattering fidelity in elastodynamics

    Full text link
    The recent introduction of the concept of scattering fidelity, causes us to revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the ``distortion'' of the coda of an acoustic signal is measured under temperature changes. This quantity is in fact the negative logarithm of scattering fidelity. We re-analyse their experimental data for two samples, and we find good agreement with random matrix predictions for the standard fidelity. Usually, one may expect such an agreement for chaotic systems only. While the first sample, may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is more surprising. For the first sample, the random matrix analysis yields a perturbation strength compatible with semiclassical predictions. For the cuboid the measured perturbation strength is much larger than expected, but with the fitted values for this strength, the experimental data are well reproduced.Comment: 4 page

    A random matrix approach to decoherence

    Get PDF
    In order to analyze the effect of chaos or order on the rate of decoherence in a subsystem, we aim to distinguish effects of the two types of dynamics by choosing initial states as random product states from two factor spaces representing two subsystems. We introduce a random matrix model that permits to vary the coupling strength between the subsystems. The case of strong coupling is analyzed in detail, and we find no significant differences except for very low-dimensional spaces.Comment: 11 pages, 5 eps-figure

    Decoherence of an nn-qubit quantum memory

    Full text link
    We analyze decoherence of a quantum register in the absence of non-local operations i.e. of nn non-interacting qubits coupled to an environment. The problem is solved in terms of a sum rule which implies linear scaling in the number of qubits. Each term involves a single qubit and its entanglement with the remaining ones. Two conditions are essential: first decoherence must be small and second the coupling of different qubits must be uncorrelated in the interaction picture. We apply the result to a random matrix model, and illustrate its reach considering a GHZ state coupled to a spin bath.Comment: 4 pages, 2 figure

    Fidelity amplitude of the scattering matrix in microwave cavities

    Full text link
    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the scattering fidelity is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength could be determined independently from level dynamics of the system, thus providing a parameter free agreement between theory and experiment

    The multilevel trigger system of the DIRAC experiment

    Get PDF
    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency ≄\geq95% of detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure

    Anomalous slow fidelity decay for symmetry breaking perturbations

    Full text link
    Symmetries as well as other special conditions can cause anomalous slowing down of fidelity decay. These situations will be characterized, and a family of random matrix models to emulate them generically presented. An analytic solution based on exponentiated linear response will be given. For one representative case the exact solution is obtained from a supersymmetric calculation. The results agree well with dynamical calculations for a kicked top.Comment: 4 pages, 2 figure

    Missing the target: including perspectives of women with overweight and obesity to inform stigma-reduction strategies

    Get PDF
    OBJECTIVE: Pervasive weight stigma and discrimination have led to ongoing calls for efforts to reduce this bias. Despite increasing research on stigma-reduction strategies, perspectives of individuals who have experienced weight stigma have rarely been included to inform this research. The present study conducted a systematic examination of women with high body weight to assess their perspectives about a broad range of strategies to reduce weight-based stigma. METHODS: Women with overweight or obesity (N = 461) completed an online survey in which they evaluated the importance, feasibility and potential impact of 35 stigma-reduction strategies in diverse settings. Participants (91.5% who reported experiencing weight stigma) also completed self-report measures assessing experienced and internalized weight stigma. RESULTS: Most participants assigned high importance to all stigma-reduction strategies, with school-based and healthcare approaches accruing the highest ratings. Adding weight stigma to existing anti-harassment workplace training was rated as the most impactful and feasible strategy. The family environment was viewed as an important intervention target, regardless of participants\u27 experienced or internalized stigma. CONCLUSION: These findings underscore the importance of including people with stigmatized identities in stigma-reduction research; their insights provide a necessary and valuable contribution that can inform ways to reduce weight-based inequities and prioritize such efforts

    Signatures of the correlation hole in total and partial cross sections

    Full text link
    In a complex scattering system with few open channels, say a quantum dot with leads, the correlation properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system. We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult, if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two different elastic or total cross sections. For these we can show numerically and to some extent also analytically a significant dependence on the correlations between the scattering poles. The difference between uncorrelated and strongly correlated poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde
    • 

    corecore