22 research outputs found

    Energetic ion transport by microturbulence is insignificant in tokamaks

    Get PDF
    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of Eb/Te , where Eb is the energetic ion energy and Te the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.United States. Dept. of Energy (DE-FC02-04ER54698)United States. Dept. of Energy (DE-FC02-99ER54512)United States. Dept. of Energy (DE-FG03-97ER54415)United States. Dept. of Energy (DE-FG02-07ER54917)United States. Dept. of Energy (DE-AC02-09CH11466)United States. Dept. of Energy (SC-G903402)United States. Dept. of Energy (DE-FG02-08ER54984)United States. Dept. of Energy ( DE-AC52-07NA27344)United States. Dept. of Energy ( DE-FG02-89ER53296)United States. Dept. of Energy (DE-FG02-08ER54999)United States. Dept. of Energy (DE-AC05-00OR22725

    Experimental validation of an integrated modelling approach to neutron emission studies at JET

    No full text
    An integrated modelling methodology for the calculation of realistic plasma neutron sources for the JET tokamak has been developed. The computational chain comprises TRANSP plasma transport and DRESS neutron spectrum calculations, and their coupling to the MCNP neutron transport code, bridging plasma physics and neutronics. In the paper we apply the developed methodology to the analysis of neutron emission properties of deuterium and helium plasmas at JET, and validate individual modelling steps against neutron diagnostic measurements. Two types of JET discharges are modelled-baseline-like and three-ion radio-frequency scenarios-due to their diversity in plasma heating, characteristics of the induced fast ion population, and the imprint of these on neutron emission properties. The neutron emission modelling results are quantitatively compared to the total neutron yield from fission chambers, neutron emissivity profiles from the neutron camera, neutron spectra from the time-of-flight spectrometer, and neutron activation measurements. The agreement between measured and calculated quantities is found to be satisfactory for all four diagnostic systems within the estimated experimental and computational uncertainties. Additionally, the effect of neutrons not originating from the dominating D(D, n)He-3 reactions is studied through modelling of triton burnup DT neutrons, and, in mixed D-He-3 plasmas, neutrons produced in the Be-9(D, n gamma)B-10 reaction on impurities. It is found that these reactions can contribute up to several percent to the total neutron yield and dominate the neutron activation of samples. The effect of MeV-range fast ions on the neutron activation of In-115 and Al-27 samples is measured and computationally validated
    corecore