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KINETIC THEORY OF PLASMA ADIABATIC MAJOR 

RADIUS COMPRESSION IN TOKAMAKS. 
M. V. Gorelenkova, N. N. Gorelenkov*, E. A. Azizov, A. N. Romannikov 

Troitsk Institute for Innovative and Fusion Rcscamh (TRINITI,, 
Tmitsk, Moscow region, Russia, 1@092 

H. W. Herrmann 
Princcton Plasma Physics Laboratory, P.O. Box 451, Princcton, NJ 08543 

A kinetic approach is developed to understand the individual charged 

particle behavior as well as plasma macro parameters (temperature, density, 

etc.) during the adiabatic R-compression in a tokamak. The perpendicular 

electric field from Ohm’s law at zero resistivity E = -VE x B/c is made use 

of to obtain the equation for particle velocity evolution in order to describe 

the particle motion during the R-compression. Expressions for both passing 

and trapped particle energy and pitch angle change are obtained for a plasma 

with high aspect ratio and circular magnetic surfaces. The particle behavior 

near the trapped passing boundary during the compression is also studied to 

understand the shift induced loss of alpha particles produced by D-T fusion 

reactions in Tokamak Fusion Test Reactor experiments. Qualitative agree- 

ment is obtained with the experiments. Solving the drift kinetic equation in 

the collisional case, i.e. when the collisional frequency umil of given species 

exceeds the inverse compression time rzapr, we obtain that the temperature 

and the density evolution is reduced to the MHD results T N Rv4I3 and 

n - R-=, respectively. In the opposite case, vdl < the longitudinal 

and perpendicular components of the temperature evolve like TI  - R-2 and 

TL N R-l.  The effect of toroidicity is negligible in both cases. 

*Present address: Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, N J  08543 
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I. INTRODUCTION 

Adiabatic compression is known to be one of the methods for auxiliary plasma heating 

in tokamak experiments [l-31. Two basic scenarios for the compression were proposed: a- 

compression or minor radius compression when a toroidal magnetic field is increased and 

a vertical magnetic field B, is adjusted for equilibrium, and R-compression when toroidal 

magnetic field is fixed and the plasma column is forced to decrease its major radii by changing 

B,. The compression may be considered adiabatic if it is done during the time T ~ , , ~ ~ , .  longer 

than the Alfvhn time and shorter than the energy confinement time. When the compression 

is collisional, i.e T ~ , , ~ ~ , .  >> ~ ~ ~ i l  = Y-’, where v is collisional frequency, the particle distribution 

function is Maxwellian during the compression and Magneto Hydro Dynamic (MHD) is valid, 

which may be used to derive the compression scaling laws for plasma parameters (see for 

example [a]). However in the opposite case, rcOmpr 5 ~ ~ ~ l l  = v-l, the distribution function is 

to be found from the drift kinetic equation and the conservation laws. Even in the collisional 

case for bulk plasma ions some species may have a nonequilibrium distribution function, such 

as a-particles, Neutral Beam Injected (NBI) particles, Ion Cyclotron Resonance Heated 

(ICRH) particles, etc. Note, that this circumstance may be used for more effective heating 

if NBI ions are mostly injected tangentially to the magnetic axis, for which, as we will see, 

the parallel component of its velocity is U J J  - BO’, while the perpendicular component goes 

like vL - R;’’’. 
Another motivation for developing the theory of plasma compression in tokamaks is 

the behavior of energetic particles near the passing-trapped boundary. Even in a weak 

collisionallity such particles may be scattered from confined passing to unconfined trapped 

and contribute to the prompt loss flux to the first wall, which may be used as a fast particle 

diagnostic [4]. In Ref. [4] the signal from prompt loss detectors was measured during the 

plasma major radius shift experiments when the shifts were done with T~~~~~ = 80msec and 

the major radius shifted over ABo 2 10%Bo . However no clear correlations with plasma 

parameters and fluxes were observed. At certain conditions fluxes increase (or decrease) in 

comparison with the same plasma without a shift while in another plasma parameters the 

fluxes change insignificantly. When the fluxes increase the unexpected “delayed” losses were 

also observed during the whole shifted phase of the discharge - 100 - 200msec, similar to 
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those in DD experiments. 

Based on our results, we suggest a mechanism which could be an explanation of the 

observations. As we will show the plasma compression may increase or decrease loss fluxes 

depending on plasma parameters. Confined passing particles may be forced to move closer 

to the separatrix boundary where they can be more easily scattered to the loss cone. Such 

a mechanism may effect particles even without the external shift of plasma column. 

The Shafranov shift of the magnetic axis due to the finite plasma pressure may increase 

during the discharge. It is noticeable and may be treated as a major radius shift of the 

central magnetic surfaces. T h x ,  Sh&anov shifted magnetic axis may introduce additional 

“delayed” losses of confined a-particles, reported in [5 ] .  

We propose an approach to this problem introducing the perpendicular electric field from 

Ohm’s law under the assumption of infinite conductivity, so that the plasma local velocity 

can be expressed through the E x B drift. We also will make use of the conservation of 

magnetic momentum p and toroidal angular momentum P, and calculate the change of 

particle velocity, which drifts in the electric field. Such an approach differs from one used 

earlier [6] where only the toroidal component of the electric field was taken into account. 

The paper is organized as follows. In Sec.11 we present the basic equations. In Sec.111 

the particle flux through passing-trapped boundary is obtained as a result of the Coulomb 

pitch angle scattering. In Sec.IV the collisional and collisionless regimes are considered to 

find the plasma temperature change at the compression. A summary is given in Sec.V. 

11. BASIC EQUATIONS 

A. Integrals of motion 

A compression is adiabatic if the magnetic field changes slowly on time scale, rccompr, 

compared to the Alfvkn time, but fast compared to the energy confinement time. Under 

these conditions the drift approximation for the motion of individual charged particle remains 

valid. Therefore, two adiabatic invariants, magnetic moment ,u and the toroidal momentum 

P,, are conserved in an axisymmetric tokamak equilibrium: 

m v i  
2B 

p = -  = const, 
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e @  
27rmc 

p vllR = const, 9 -  

where e and rn are the charge and the mass of a particle, @ is the poloidal magnetic flux, B 
is the magnetic field strength, q and 01 are the parallel and perpendicular to the direction 

of the magnetic field components of particle velocity v, respectively. It is assumed that 

v * B,/B, CY 011. 

To define the particle motion during the compression we need the evolution equation for 

its velocity, which is not conserved. We will derive such an equation in section I IC  using 

the electrical field E from the E x B drift and prescribing the plasma velocity vector during 

the compression. 

B. Coordinate system 

Following Ref. [7] we introduce a curvilinear ( r ,  8 , ~ )  coordinate system which becomes 

the usual cylindrical ( R ,  2, p) coordinate system when major radius Ro + 00 (see Fig.1). 

Poloidal angle 8 is related to the azimuthal angle cy of the magnetic surface by the expression 

cy = 8 - S(r ,  6); the small correction S(r ,  8) can be chosen in a way that the force lines of 

the unperturbed magnetic field are straight lines in the coordinates 6 and p (see below). 

The distance to the center of the magnetic surface r = const from the axis of symmetry 

2 is R,, = Ro + A(T), where Ro = const and the small quantity A is the Shafranov shift, 

which is determined by the equilibrium condition. The relation between the cylindrical and 

curvilinear coordinates is 

R = & + A(r)  + r cos (a ) ;  2 = rsin(a);cy = 8 - S (2) 

In our case the toroidicity is assumed to be small E = a / &  << 1, i.e. the quantities d and 

A / u  are small parameters of order E (where a is a minor radius). According to Eq.(2) an 

expression for the square of the element of length dl is 

d12 = dR2 + d Z 2  + R 2 d p 2  = C ~ ; k d ~ ' d x ~ ,  

where d x %  = ( d r , d O , d ~ ) ,  while g,k is the metric tensor [7]. 
The magnetic field in the curvilinear coordinates is B = (0, Bo, Bw). where the toroidal 

and poloidal components of the magnetic field are 
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BO& B, = - R '  
1 - (A(r )  - 2 ~ )  COS 8 

R2 Be = i3: 7 (3) 

where A is a small asymmetry parameter that depends on the distribution of plasma pressure 

and current density [7]. In the absence of a known plasma pressure gradient one can use the 

approximate expression for A 

(4) 
3 
4 

n ( r )  = - E .  

The relation between S and A is determined so that the equation for the lines of force 

is independent of 0 and 9. B2 and B3 are the second and third contrvariant components of 

the magnetic field being given by 

B, 
6' 

B3 = - 

It then follows from Eqs.(5) and (6) that one must choose 

S = (A  - &) sin 0. 

Using the equations 

1 3  di,vB = --q'ijB2 = 0 
80 

and Eq.(6) the relation between A' = d A / d r  and A is 

A' = A - E ,  

where g = Detg;k. 

Taking into account Eqs.(7) and (8), the nonvanishing components of the metric tensor 

up to O ( e 2 )  are 
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E E‘ 

2 16 gii = 1 - - cos(8) + -(I + 35 sin 0’) 
3 5 

g 1 2  = -re sin e( 1 + --E cos 0) 
2 4 

5 
4 

9 2 2  = r2( 1 + --E cos S ) 2  

933 = R2. 

C. Particle velocity and pitch angle evolution 

The velocity of charged particles during R-compression changes as a result of drift in 

the perpendicular electric field which we introduce from the Ohm’s law at zero resistivity 

(see Fig.(l))  

where VE is the plasma hydrodynamic velocity vector during the compression. The plasma 

displacement and electromagnetic field vectors in a poloidal cross section of the tokamak are 

presented in Fig.(l) .  

In cylindrical coordinates vector VE is defined as 

where A = dA/d t .  In the curvilinear coordinates the expressions for v,g is given by 

where FL = d F / d z .  In order to find I? we also need a time derivative or T ,  which is a 

consequence of the magnetic field frozen-in law, 

The equation for the kinetic energy of the particle drifting in the presence of electrical 

field E is 

d l  
d t  - = e E - v d r ,  
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where 

is particle toroidal drift velocity in the plasma low pressure approximation and w, is particle 

gyro-frequency. Using Eqs.(S), (10) and p = Bop/€ the equation for the variation of the 

absolute value of the particle velocity can be written in the form 

The final expression in the curvilinear coordinates for the d v / d t  up to O(c2)  accuracy is 

given by 

- dv - - -u& (1 - PRO -) (1 + :cos6 - e2 (2 + L) sins2) 
dt R 2R 2 8 q2 

Eq.(13) is a local equation. To calculate d v / d t  over time larger than q, which is the 

”bounce” time for trapped or transit time for passing particles, the Eq.(13) should be aver- 

aged over the drift particle orbit: 

where 111 = IB/B. In the approximation of straight force lines in the coordinates 8 and 9 

(Eq.(5)), Eq.(15) reduce to 

Under the zero drift orbit radial width assumption the analytical expression of the oscil- 

lation period of trapped particles Tb  is 

where K and E are complete elliptic integrals of the first and second kind, respectively, and 

ae = (1 + A - E )  (1 + A + 6 - p )  / ( 2 p c ) .  For passing particles 
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1 
x [I< (L) (2p2 (1  + A )  + E' - 1 - A) + E (-) (1  + A - E) (1  + A  + e - p ) ]  . 

E E 

The expression for du /d t  (Eq.( 13)) for trapped particles after orbit averaging can be written 

in the analytical form 

8qFio (1 + A)2 - E2 { g) = +J-J 
[I< ( E )  (I - ;) + E (K ( E )  - 2E ( E ) )  

2PE 

While for passing particles 

The pitch angle evolution equation result from the magnetic moment conservation Eq.( 1):  

dp 2p du 
dt 7J 
- = -- (%) - P&, 

111. COLLISIONAL FLUX THROUGH THE PASSING-TRAPPED BOUNDARY 

We use the equations obtained above, to calculate the change of collisional fluxes of 

confined fusion particles studied in major radius shift experiments [4]. Assume, that pitch 

angle scattering of energetic ions is a reason for a diffusion of these particles across the 

passing-trapped boundary. The drift kinetic equation can be presented in the following 

form 

df 
- dt = W) + S ,  

where f = f(w,p, P p , t )  is the particle distribution function, C represents the Coulomb 

collisional operator and S = Sod( L' - vo)/(4nu,2) is fusion particle source at the birth velocity 
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= vo. Assuming that the collisional effects are weak for energetic particles, an expansion 

in the small parameter l / ( ~ , , l l ~ ~ , ~ ~ ~ )  is appropriate, f = f o  + f1 + . . ., where f ; / f ; - l  "V 

o( 1 / ( ~ , ~ i ~ ~ , , , ~ ~ - ) ) .  The function f o  can be determined from the orbit average version of the 

first order equation 

where (. . .) represents orbit average operation. The model solution for the particle distribu- 

tion function fo was found in [8] for collisional operator in the form: 

where r,, is a slowing-down time, U* = u*(T,,ne,T;,n,) is the critical velocity when the 

slowing-down rate on electrons is the same as on the plasma ion's and x = q/u = (1 - 

PRO/ R) 1/2.  

Then, the particle flux across the passing-trapped boundary due to the pitch angle scat- 

tering process is obtained as follows: 

where d3v = cZpv2dv/IXI. Taking into account the facts that for particles near the passing- 

trapped boundary layer the pitch angle scattering dominates over the energy scattering and 

the distribution function has a monotonically decreasing slope toward the boundary, then 

Eq.( 18) can be written as 

Integrating Eq.(19) in p ,  we can roughly estimate the ratio of the particle flux after 

R-compression I' to the particle flux before compression I'o as 

where x = Ro(t)/Ro(O), g(z) = (1 + + c2/2 and h p  is a solution of the equation 
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where subscript s means that the value is refered to the passing-trapped separatrix boundary 

and Apo, ?-bol go and to are the parameters before the compression. Here Apo is the char- 

acteristic width of the scattering layer near the boundary. X-dependence of t was found 

from Eq.( l l )  and is given by 

€0 
€(X) = -. fi 

To estimate ApO in a steady state we use the fact that the small angle deflection processes 

can scatter marginally confined energetic ions as they slow down. Since the velocity of the 

particle in the boundary layer u is smaller than the birth velocity vo, Eq.(17)is reduced to 

f0 R fop0 

?-S€ TseV3 A p ; .  
- N ( I o x 2 )  -- 

We also evaluate ( Z y  R 2  ) 2~ Apo  and taking into accout that po N 1, therefore, A p o  can be 

estimated as 

v*3 
Apo  = - 

v3 . 

A. Application to major radius shift experiments in TFTR 

Our calculations show that the ratio r/r0 is a very sensitive function of e. Therefore, to 

get a more reliable estimate of particle flux change during the R-compression we have to 

take into account the non-zero banana width. The displacement of near separatrix passing 

particles from the flux surface (AT = r - r,, where r ,  is a value of r on the separatrix at 

8 = 7 i , q  = 0)  has been found from the conservation laws Eq.(l) and the assumption that 

the displacement is small, so that we can use an expansion in the small parameter Ar / r .  

The solution of r = r(r,,O) was obtained from 

keeping terms up to  AT/^)^. The safety factor profile was chosen in the form 
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where qo and 41 are the edge values of q at r / a  = 0 and r / a  = 1. 

As an example, fig.(2) shows the dependence of the ratio r / r O  on A p o  at different E = 

0.15,0.2,0.25,0.28 for TFTR (#86136) supershot plasma parameters 141: I& = 2.62,qo = 

1.5,ql = 5.1, k = 1 . 1 , ~  = 0.9, calculated by TRANSP code [9]. Particle energy necessary to 

define orbit averaging was E = 2.8MeV. €-dependence of the ratio r/r, is strong and is 

presented on Fig.(3) at different Apo = 0.002,0.008,0.017 . The smaller Apo  the stronger 

the effect. After the compression the particles flux I' becomes weaker compared to ro up to 

E = ecr when the flux r exceeds Po. 
The mechanism responsible for e-dependence of the particle collisional flux through 

the passing-trapped boundary can be understood from the point of view of passing near- 

separatrix particles. Fig.(4) shows the local (dashed curves) and averaged over the orbit 

(solid curves) velocity time derivative dw/dt at E = 0.1 and 0.3. There is a region with 

E < E,,. when the averaged value (du ld t )  is larger than the local value dv/d t ,  taken at 

the bounce point of the separatrix particle (poloidal angle 0 = T ) .  As a consequence of 

the fact that pv2Ro = const, the near separatrix particles have a tendency to decrease 

their pitch-angle, and deviate from the boundary (see Fig.5). In the case e > e,, the 

particle pitch-angle increases, since dv/dt  is larger than ( d v l d t ) ,  therefore passing particles 

approach the trapped-passing boundary as in Fig.6. The existence of the E, is explained by 

the competition between the contributions from the toroidal and the poloidal components 

of the magnetic field in Eq.( 13). The later increases with the minor radius and generates 

larger electric fields at 0 = T .  The separatrix boundary in Figs.(5) and (6) is given by 

P J X )  = 1 t A(.) - €(.). 

Major radius shifts in TFTR DT discharges were done at three values of plasma current; 

1.0, 1.4 and 1.8 MA [4]. Lost partially thermalized a-particles ( E  N- 2.8 MeV) were observed 

by the lost alpha detector located at the bottom of the vacuum vessel at the poloidal angle 

90'. In the 1.0 MA discharge alpha loss normalized to the neutron flux slightly decreases after 

the shift ( ARo = 9%Ro) in comparison with baseline discharge (without R-compression). 

Opposite to the 1.0 MA discharge, the alpha loss slightly increases in the 1.8 MA discharge 

after the shift (ARo = 5%&). The most pronounced effect occurs in the 1.4 M-4 discharge 

at 10% R-compression. The shifted discharge displays alpha loss approximately 60% higher 
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than the baseline shot. 

To find the bounce point coordinates, i.e. in the experiments E and A p o  for a-particles 

with E = 2.8MeT.’ we used Eqs.(22) and (21) at 8 = - ~ / 2  and the formula u* = O.luadT(r). 

The q profile was approximated by the form Eq.(23) to be close to TRANSP calculated 

profiles, where: 

40 = 1.3,ql = 7.6. a = 0.77m, k = 0.65 for the 1.0 MA discharge; 

qo = 1 . 5 , q I  = 5.1, a = 0.73m. k = 1.10 for the 1.4 MA discharge; 

qo = 1.1.ql = 4.9.a = 0.87’rn, k = 0.95 for the 1.8 MA discharge. 

Therefore, we have: 

E = 0.205. I p o  = .003 for the 1.0 MA discharge; 

E = 0.25, ApO = .002 for the 1.4 MA discharge; 

E = 0.27,Apo = .0018 for the 1.8 MA discharge. 

Our calculations show that for such q profiles and A p o  the critical values of e,, are 0.21, 

0.235 and 0.265 for the 1.0 MA, 1.4 M A  and 1.8 MA discharges, respectively. 

Thus. it is possible to understand the experimental results. In the 1.0 MA discharge 

detector registers alpha particles with E less than ecr. It means that the collisional flux 

must decrease at  the R-compression. In the case of 1.4 and 1.8 MA discharges registered 

a-particles have E higher than E,,, and the flux must increase at the compression. The 

ratio r/ro strongly dependens on the compression factor x and the value of the pitch angle 

collisional layer width in steady state, A p o .  For such experimental parameters the calculated 

ratios of collisional fluxes r/rO are 0.95 (Z = 1.0 MA), 3.5 (Z = 1.4 MA) and 1.1 (1 = 1.8 

MA).  Experimental data indicate that the ratio of the total particle flux in these experiments 

to the particle flux in similar shots without the compression are 0.8 (Z = 1.0 MA), 1.6 (Z = 

1.4 MA), 1.2 (Z = 1.8 MA). From the comparison of the modeling and the measurements it 

follows that the collisional part of the total fluxes should be: > 5% for the 1.0 MA discharge, 

N 17% for the 1.4 MA discharge and N 18% for the 1.8 MA discharge. 

More detailed analysis is beyond the scope of this paper. It should include the calculation 

of the collisional fluxes and more accurate orbit averaging with guiding center approximation 

of particle orbits. 
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IV. PLASMA TEMPERATURE DURING THE R-COMPRESSION 

Hcrc wc usc our approach to calculatc thc plasma macroparamctcrs, for bcnchrnarking 

thc thcory with MHD and to obtain morc accuratc rcsults for R-comprcssion in toroidal 

gcomct ry. 

A. Collisional regime, 7mpr > v z ,  

In thc casc whcn roompr cxcccds thc invcnc collisional frcqucncy vzl thc drift kinctic 

cquation is rcduccd to thc following form: 

Sincc thc collisional cffcct is wcak during thc orbit motion of particlcs, an cxpansion in small 

paramctcr l / (vdlT-pr)  is appropriatc, f = fo + f1 + . . . , fi+l/ f j  O( l/(VdlT-pr)). Thcn 
thc zcroth ordcr in l / ( v ~ l ~ , , , ~ , . ) )  of Eq.(25) is: 

C(f0) = 0. 

fo is a Maxwcllian function as a conscqucncc of Eq.(26). For plasma with density n(t) and 

tcmpcraturc T ( t )  fo is writtcn as 

312 
f o =  (L) n(t) cxp-EIT(t). 

27rT ( t )  

Thc first ordcr in l /(v~lrarmpr) cquation rcsulting from Eq.(25) is 

afo a f o  - + i,- = C(f1). at dv 

Thc cquation for thc plasma dcnsity rcsults from Eq.(28) and thc particlc conscrmtion law 

J C(f1)d3vdjr = 0. 

Wc transform thc intcgration variablcs in Eq.(29) from (R, Z,cp, v~ ,v i i )  to (Pw, 9 ,  p , p ,  w ) .  

Substituting Eq.(28) into Eq.(29) and using Eq.(27) aftcr intcgrating it wc haw thc cxprcs- 

sion for plasma dcnsity 
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with the integra1 J(. . .)dp taken over the particle pitch angle, that is 

Eqs.(l3) and (15) should be used for L$ and Tb, accordingly. Using the fact that the total 

energy of the system is conserved, Le. 

we result in the plasma similar to Eq.(30) equation for the plasma temperature 

d l n T  2 d l n n  
clt 3 dt 
- - ____ - 

The dependences of the temperature growth (A/(%) = d lnT/d lnx )  on the compression 

factor x at the E = 0.01,0.15,0.25,0.3 are shown on Fig.(7). During the R-compression 

the efficiency of plasma heating decrease in edge direction ( 6  rises), see Fig.(8) where the 

t-dependence is shown at different compression factors x = 1,0.9,0.7,0.6. 

On the other hand, the expression for plasma density can be obtained from the particle 

conservation law 

and Eq.(l l) ,  which is valid in MHD. Then we have 

d l n n  ~ , 2 3 1 ~ ~  + (64A + 2 5 ~ ~ )  J(1 + A)2 - c2 

1 
1 + E A  + $ (11 - 5A)' 

X 

This analytica1,MHD result, and the calculated result coincide with the accuracy of used 

approximation ( N c 3 )  

B. Collisionless regime, rccompr << v;:! 

Plasma temperature is determinated by the distribution function f o (  vo, po,  Pvo, t o )  before 

and by f (  L'. p ,  &, t )  after the compression the expression for the plasma temperature is 
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T = 2/3 s f f ( ' U , P ,  e o ,  w3'U 

s f (W,  K 9 7  t)d3'U 

In the collisionless regime, when rccompr << vc:fi the kinetic equation is 

= 0. &(v, P* fL t )  
d t  

Taking into account Eq. (1), Eq. (33) gives 

Thus, Eq.(32) can be rewritten as 

( 3 3 )  

where the distribution function before the compression fo = fO(v0) is Maxwellian. The 

dependence wo = wo(v(t)) is obtained from the solution of the system of equations for v and 

p ( Eqs( 13), (15) and (16)) with the boundary conditions: 

v( t  = 0) = vo, 

p ( t  = 0) = Po. 

In the limit E + 0, when only passing particles are taken into account, analytical solution 

of such a system is 

For the plasma temperature and for longitudal 

have 

and perpendicular TL components we 

The same results have been predicted in the quasi-MHD system of guiding center approxi- 

mation [IO] 

The influence of the toroidicity ( c  = 0.01,0.15,0.25,0.3) on the plasma temperature 

growth obtained by the numerical calculation is presented on Figs.(S), (10) and (11) for 
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longitudal, perpendicular and total temperature, accordingly. The opposite effects of the 

plasma heating in different directions (longitudal and perpendicular) are observed when the 

E increases. TI grows more than the local ( e  -+ 0) analytical estimate gives, Fig.(S), but the 

efficiency of the “transverse?’ heating, TL, decreases Fig.( 10). These two effects compensate 

each other and €-dependence of total plasma temperature T is weak, Fig.(ll).  However, 

efficiency of the heating may be higher if the distribution function before the compression 

was not Maxwellian. In fact, if we assume that the distribution is beam-like with particles 

mostly moving tangentially to the magnetic field, then such group of particles may be heated 

very effectively T = TI = T0/(3s2). 

V. SUMMARY AND CONCLUSIONS 

A new approach to the problem of major radius compression in a tokamak is presented 

based on modeling of the plasma motion during the compression by means of the E x B 

drift. The particle velocity and pitch angle evolution equations during the compression are 

derived. 

Theory was applied to calculate the collisional fluxes through the trapped-passing bound- 

ary into the loss cone. The main results are: At  E < e,,, where E,, is some critical parameter, 

which strongly depends on plasma q profile and the temperature, passing particles have a 

tendency to deviate from the passing-trapped boundary, while the trapped particles ap- 

proach this boundary. Thus, confined counter passing particle may less effectively scatter 

into the loss cone after the compression. .At c > passing particles approach the passing- 

trapped boundary and trapped particles move away from this boundary (Fig.4). It leads to 

an increase in collisional losses. Presented theory may be also a candidate for the explanation 

of the so-called ”delayed” losses observed in TFTR by S.Zweben. 

In a collisional regime the adiabatic compression is less effective at higher toroidicity and 

the plasma temperature increases slower than at c = 0. 

In a collisionless regime plasma temperature evolution is a weak function of the toroidic- 

ity. However, the efficiency of the heating during the compression may be higher in com- 

parison with the collisional case for beam like distribution when T = = To/(3x2). 
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Fig.1 Poloidal cross section (p = const) of the tokamak illustrating the curvilinear 

( r ,  8, p) coordinate system, electric field E = -:vE xB, the plasma hydrodynamic velocity 

vector during the compression VE, the total magnetic field B, toroidal B, and poloidal Be 

magnetic field components. Plasma dimensions are defined by the major l& and minor a 

radii ( r  5 a )  

Fig.:! The dependence of the ratio of the particle flux after R-compression !? to the 

particle flux before compression ro on Apo at E = 0.15 (solid curve), 0.2 (dashed curve), 

0.25 (dashed-dot curve), 0.28 (dot curve) at the compression factor 2 = 0.9. 4 p 0  is the 

characteristic width of the scattering layer near the boundary in steady state. 

Fig.3 An €-dependence of the ratio of the particle flux after R-compression I? to the 

particle flux before compression ro at Apo = 0.002 (solid curve), 0.008 (dashed curve) and 

0.017 (dashed-dot curve) at the compression factor z = 0.9. Apo is the characteristic width 

of the scattering layer near the boundary in steady state. 

Fig.4 Local dvld t  (dashed curve) and averaged over the drift particle orbit ( d v l d t )  (solid 

curve) values of the pre-separatrix particle velocity time derivative at t: = 0.1 and 0.3 

Fig.5 The pre-separatrix particle pitch-angle behavior near the passing-trapped bound- 

ary p ,  during the R-compression as a function of compression factor z = Ro(t)/Ro(O) at 

E = 0.1 ( c  < Ecr)  

Fig.6 The same as in Fig.(5) but at E = 0.3 ( E  > ecr) 

Fig.7 The power of the temperature growth (y = d l n T / d l n z )  at R-compression as a 

function of the compression factor x = Ro(t) /&(0)  at t: = 0.01 (solid curve), 0.15 (dashed 

curve), 0.25 (dashed-dot curve), 0.3 (dot curve) 

Fig.8 An dependence of the power of the temperature growt,h (y = dln T/dln x) at 

18 



different compression factors J: = 1 (solid curve), 0.9 (dashed curve), 0.7 (dashed-dot curve), 

0.6 (dot curve) 

Fig.9 The longitudal plasma temperature growth as a function of the compression factor 

J: = Ro(-t)/Ro(O) at 6 = 0.01 (solid curve), 0.15 (dashed curve), 0.25 (dashed-dot curve), 0.3 

(dot curve) 

Fig.10 The same as in Fig.9 but for perpendicular plasma temperature growth 

Fig.11 The same as in Fig.9 but for total plasma temperature growth 
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