626 research outputs found

    Genome-Wide Association Study and Pathway-Level Analysis of Kernel Color in Maize.

    Get PDF
    Rapid development and adoption of biofortified, provitamin A-dense orange maize (Zea mays L.) varieties could be facilitated by a greater understanding of the natural variation underlying kernel color, including as it relates to carotenoid biosynthesis and retention in maize grain. Greater abundance of carotenoids in maize kernels is generally accompanied by deeper orange color, useful for distinguishing provitamin A-dense varieties to consumers. While kernel color can be scored and selected with high-throughput, low-cost phenotypic methods within breeding selection programs, it remains to be well established as to what would be the logical genetic loci to target for selection for kernel color. We conducted a genome-wide association study of maize kernel color, as determined by colorimetry, in 1,651 yellow and orange inbreds from the Ames maize inbred panel. Associations were found with y1, encoding the first committed step in carotenoid biosynthesis, and with dxs2, which encodes the enzyme responsible for the first committed step in the biosynthesis of the isoprenoid precursors of carotenoids. These genes logically could contribute to overall carotenoid abundance and thus kernel color. The lcyE and zep1 genes, which can affect carotenoid composition, were also found to be associated with colorimeter values. A pathway-level analysis, focused on genes with a priori evidence of involvement in carotenoid biosynthesis and retention, revealed associations for dxs3 and dmes1, involved in isoprenoid biosynthesis; ps1 and vp5, within the core carotenoid pathway; and vp14, involved in cleavage of carotenoids. Collectively, these identified genes appear relevant to the accumulation of kernel color

    Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development.

    Get PDF
    The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (g c) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of g c of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with g c were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of g c in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of g c and have the potential to help breeders more effectively develop drought-tolerant maize for target environments

    Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

    Get PDF
    The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits

    Parental Views on Sexual Education in Public Schools in a Rural Kentucky County Eastern Kentucky University

    Get PDF
    Despite Kentucky having almost twice the national birth rate with 50 births per 1,000 female population ages 15-19 (County Health Rankings, 2015), the implementation of comprehensive sexual education in Kentucky public schools remains a controversial topic. This study examined parental attitudes regarding comprehensive sex education curriculum in a rural Kentucky middle school. A survey was distributed to a convenience sample population of parents (N=100) whose children were enrolled in a rural Appalachian middle school in grades 6th thru 8th. Data were analyzed using Chi square and multi-variate techniques. Of the 63 participants, 58.7% believed that sex education should begin in middle school. Of the 73% (n=46) of respondents who believed abstinence-plus should be taught, 58.7% (n=27) were between the ages of 26 and 35, and 28.3% (n=13) were between the ages of 36 and 45. Differences in attitudes towards sex education was strongly influenced by both age and education level

    A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.

    Get PDF
    Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A

    Outcome of ATP-based tumor chemosensitivity assay directed chemotherapy in heavily pre-treated recurrent ovarian carcinoma

    Get PDF
    BACKGROUND: We wished to evaluate the clinical response following ATP-Tumor Chemosensitivity Assay (ATP-TCA) directed salvage chemotherapy in a series of UK patients with advanced ovarian cancer. The results are compared with that of a similar assay used in a different country in terms of evaluability and clinical endpoints. METHODS: From November 1998 to November 2001, 46 patients with pre-treated, advanced ovarian cancer were given a total of 56 courses of chemotherapy based on in-vitro ATP-TCA responses obtained from fresh tumor samples or ascites. Forty-four patients were evaluable for results. Of these, 18 patients had clinically platinum resistant disease (relapse < 6 months after first course of chemotherapy). There was evidence of cisplatin resistance in 31 patients from their first ATP-TCA. Response to treatment was assessed by radiology, clinical assessment and tumor marker level (CA 125). RESULTS: The overall response rate was 59% (33/56) per course of chemotherapy, including 12 complete responses, 21 partial responses, 6 with stable disease, and 15 with progressive disease. Two patients were not evaluable for response having received just one cycle of chemotherapy: if these were excluded the response rate is 61%. Fifteen patients are still alive. Median progression free survival (PFS) was 6.6 months per course of chemotherapy; median overall survival (OAS) for each patient following the start of TCA-directed therapy was 10.4 months (95% confidence interval 7.9-12.8 months). CONCLUSION: The results show similar response rates to previous studies using ATP-TCA directed therapy in recurrent ovarian cancer. The assay shows high evaluability and this study adds weight to the reproducibility of results from different centre
    • …
    corecore