2,873 research outputs found

    African provenance for the metasediments and metaigneous rocks of the Cyclades, Aegean Sea, Greece

    Get PDF
    U-Pb geochronology on detrital and inherited zircons from metasediments as well as gneissic and metaigneous basement rocks of the Cyclades, Aegean Sea, Greece, defines several periods of crustal growth prior to the Carboniferous. These ages are consisten

    Lithospheric-scale structures in New Guinea and their control on the location of gold and copper deposits

    Get PDF
    The locations of major gold and copper deposits on the island of New Guinea are considered by many to be controlled by a series of transfer faults that strike N–S to NE–SW, perpendicular to the long axis of the island. The premise is that these faults dilate perpendicular to the regional stress field, forming conduits for metalliferous gases and fluids to drop out of solution. However, the data on which this idea was first proposed were often not presented or, when the data were presented, were of poor quality or low resolution. We therefore present a review of the existing structural interpretations and compare these with several recently published geophysical data sets to determine if the mineralization controlling transfer faults could be observed. These data were used to produce a new lineament map of New Guinea. A comparison of the lineaments with the location of major gold and copper deposits indicates there is a link between the arc-normal structures and mineralization. However, it is only those deposits that are less than 4.5 million years old that could be associated with these structures. Gravity and seismic tomography data indicate that some of these structures could penetrate deep levels of the lithosphere, providing some support to the earlier idea that the arc-normal structures act as conduits for the younger mineral deposits of New Guinea. The gravity data can also be used to infer the location of igneous intrusions at depth, which could have brought metal-bearing fluids and gases closer to the Earth's surface. These regions might be of interest for future exploration campaigns, particularly those areas that are crosscut by deep, vertical faults. However, new exploration models are needed to explain the location of the deposits that are older than 5 Ma

    The collision of India with Asia

    Get PDF
    We review the relative motion of India and Asia for the last 100 million years and present a revised reconstruction for the India-Antarctica-Africa-North America-Eurasia plate circuit based on published motion histories. Deformation of these continental masses during this time introduces uncertainties, as does error in oceanic isochron age and location. Neglecting these factors, the data ipso facto allow the inference that the motion of India relative to Eurasia was distinctly episodic. Although motion is likely to have varied more smoothly than these results would allow, the geological record also suggests a sequence of distinct episodes, at about the same times. Hence we suggest that no single event should be regarded as the collision of India with Asia. The deceleration of the Indian plate commencing at ~65. Ma is matched by an equally significant prior acceleration and this aspect must be taken into account in geodynamic scenarios proposed to explain the collision of India with Asia

    Rolling open Earth’s deepest forearc basin

    Get PDF
    The Weber Deep—a 7.2-km-deep forearc basin within the tightly curved Banda arc of eastern Indonesia—is the deepest point of the Earth’s oceans not within a trench. Several models have been proposed to explain the tectonic evolution of the Banda arc in the context of the ongoing (ca. 23 Ma–present) Australia–Southeast Asia collision, but no model explicitly accounts for how the Weber Deep achieved its anomalous depth. Here we propose that the Weber Deep formed by forearc extension driven by eastward subduction rollback. Substantial lithospheric extension in the upper plate was accommodated by a major, previously unidentified, low-angle normal fault system we name the “Banda detachment.” High-resolution bathymetry data reveal that the Banda detachment is exposed underwater over much of its 120 km down-dip and 450 km lateral extent, having produced the largest bathymetric expression of any fault discernable in the world’s oceans. The Banda arc is a modern analogue for highly extended terranes preserved in the many regions that may similarly have “rolled open” behind migrating subduction zones

    Geological aspects of Banda Sea ecosystems and how they shape the oceanographical profile

    Get PDF
    The Banda Sea is a collage of young oceanic basins and fragmented Australian continental crust located at the heart of the Australia-SE Asia collision zone where Australian and Asian biogeographic regions converge. The formation of the sea was governed by the southeastward rollback of the Banda Slab since c. 16 Ma, which in its wake opened new oceanic basins and extended and fragmented Australian crust. These Australian crustal fragments are today either stranded within the Banda Sea where they form the prominent submarine 'Banda Ridges', or now reside as thrust-sheets on the NW Australian shelf after being transported all the way to the southern Banda Arc. The deepest part of the Banda Sea, the 7.2 km Weber Deep, was formed by extreme lithospheric extension that occured in the latter stages of Banda Slab rollback. This extension was accommodated by the vast low-angle 'Banda Detachment', which operated above the subducted fringes of the Australian continental margin

    Evolution of the Australian lithosphere

    Get PDF
    The evolution of the Australian plate can be interpreted in a plate-tectonic paradigm in which lithospheric growth occurred via vertical and horizontal accretion. The lithospheric roots of Archaean lithosphere developed contemporaneously with the overlying crust. Vertical accretion of the Archaean lithosphere is probably related to the arrival of large plumes, although horizontal lithospheric accretion was also important to crustal growth. The Proterozoic was an era of major crustal growth in which the components of the North Australian, West Australian and South Australian cratons were formed and amalgamated during a series of accretionary events and continent-continent collisions, interspersed with periods of lithospheric extension. During Phanerozoic accretionary tectonism, approximately 30% of the Australian crust was added to the eastern margin of the continent in a predominantly suprasubduction environment. Widespread plume-driven rifting during the breakup of Gondwana may have contributed to the destruction of Archaean lithospheric roots (as a result of lithospheric stretching). However, lithospheric growth occurred at the same time due to mafic underplating along the eastern margin of the plate. Northward drift of Australia during the Tertiary led to the development of a complex accretionary margin at the leading edge of the plate (Papua New Guinea)

    Where does India end and Eurasia begin?

    Get PDF
    The Indus Suture Zone is defined as the plate boundary between India and Eurasia. Here we document geochronological data that suggest that Indian rocks outcrop to the north of this suture zone. The inherited age spectrum of zircons from mylonitic gneiss collected in the southern part of the Karakorum Batholith is similar to those obtained from the Himalayan Terrane, the Pamir and is apparently Gondwanan in its affinity. These data are taken to indicate that the Karakorum Terrane was once a component of Gondwana, or at least derived from the erosion of Gondwanan material. Several continental ribbons (including the Karakorum Terrane) were rifted from the northern margin of Gondwana and accreted to Eurasia prior to India-Eurasia collision. Many therefore consider the Karakorum Terrane is the southern margin of Eurasia. However, we do not know if rifting led to the creation of a new microplate(s) or simply attenuated crust between Gondwana and these continental ribbons. Thus there is a problem using inherited and detrital age data to distinguish what is "Indian" and what is "Eurasian" crust. These findings have implications for other detrital/inherited zircon studies where these data are used to draw inferences about the tectonic history of various terranes around the world

    Structural Geology and the Seismotectonics of the 2004 Great Sumatran Earthquake

    Get PDF
    The paper sets out a method for structural analysis of seismotectonic data using centroid moment tensors and associated hypocenters from the Global Centroid Moment Tensor project, here illustrated for aftershocks from the 2004 great Sumatran earthquake. We show that the Sumatran segments of the megathrust were subject to compression in a direction near to orthogonal with the margin trend, consistent with the effect of relative movement of the adjacent tectonic plates. In contrast, the crust above the Andaman Sea segments was subject to margin-orthogonal extension, consistent with motion toward the gravitational potential well accumulated due to prior lateral (westward) rollback of the subducting edge of the northward moving Indian plate. Since this potential well is largely defined by topography, this episode of margin-orthogonal extension is at least in part “gravity driven.” It did not last long. Within 15 months, an earthquake cluster across an Andaman Sea spreading segment showed a return to kinematics driven by relative plate motion. The transition can be explained if fluid activity temporarily reduced basal friction (or effective stress) but then led to healing so that the megathrust once again began to develop friction-locked segments. The influence of slab rollback is in developing a gravitational potential well facing the megathrust, hence drawing the overriding crust toward it in the immediate postrupture phase while the megathrust is in a weakened state. Plate tectonics dominates during interseismic gaps, once the megathrust heals, and regains frictional resistance.y. The authors acknowledge funding support from the Australian Research Council: Discovery Project DP120103554 “A unified model for the closure dynamics of ancient Tethys constrained by geodesy, structural geology, argon geochronology and tectonic reconstruction” and Linkage Project LP130100134 “Where to find giant porphyry and epithermal gold and copper deposits.” The research was also supported by the “Satellites, Seismometers and Mass Spectrometers” initiative within the Research School of Earth Sciences at ANU. Bob Engdahl is thanked for his support during earlier versions and for providing data
    • …
    corecore