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ABSTRACT 7 

The Weber Deep—a 7.2 km-deep forearc basin within the tightly curved Banda 8 

Arc of eastern Indonesia—is the deepest point of the Earth’s oceans not within a trench. 9 

Several models have been proposed to explain the tectonic evolution of the Banda Arc in 10 

the context of the ongoing (c. 23 Ma–present) Australia–SE Asia collision, but no model 11 

explicitly accounts for how the Weber Deep achieved its anomalous depth. Here we 12 

propose the Weber Deep formed by forearc extension driven by eastward subduction 13 

rollback. Substantial lithospheric extension in the upper plate was accommodated by a 14 

major, previously unidentified, low-angle normal fault system we name the ‘Banda 15 

Detachment’. High-resolution bathymetry data reveal that the Banda Detachment is 16 

exposed underwater over much of its 120 km down-dip and 450 km lateral extent, having 17 

produced the largest bathymetric expression of any fault discernable in the world’s 18 

oceans. The Banda Arc is a modern analogue for highly extended terranes preserved in 19 

the many regions that may similarly have ‘rolled open’ behind migrating subduction 20 

zones. 21 

INTRODUCTION 22 
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A subducting slab will sweep backward through the mantle if its negative 23 

buoyancy overcomes the mantle’s viscous drag. This action—slab rollback—will drive a 24 

trench to migrate in the opposite direction to that of subduction, thereby enabling an arc 25 

to travel considerable distances and continually adjust its curvature (Dewey, 1980; 26 

Royden, 1993). Rollback may cause an adjacent mountain belt to switch between periods 27 

of shortening and extension (Lister and Forster, 2009), drive the extension of back-arc 28 

and forearc basins (e.g., D’Agostino et al., 2011; Maffione et al., 2015; Do Couto et al., 29 

2016), exhume metamorphic core complexes (e.g., Lister et al., 1984; Dewey, 1988), 30 

and/or cause oroclinal bending (e.g., Schellart and Lister, 2004). These first-order 31 

tectonic processes are intrinsic to the evolution of many, if not all, mountain belts; 32 

however, they are typically very difficult to identify once active deformation ceases. 33 

Consequently, the influence of slab rollback on the formation of mature and ancient 34 

mountain belts and basins is poorly understood. Here we demonstrate how slab rollback 35 

was fundamental to basin formation within the tightly-curved Banda Arc of eastern 36 

Indonesia (Fig. 1) – importantly one of very few places where active subduction can be 37 

related to geological observations of modern orogenesis. 38 

TECTONIC CONTEXT 39 

The Banda Arc (Fig. 1, 2), due to its extreme 180° curvature, is often cited as a 40 

‘classic’ example of a modern orocline (e.g., Schellart and Lister, 2004). Jurassic oceanic 41 

lithosphere was subducted at the trench, beneath the Neogene Banda Sea, to form a 42 

highly concave westward-plunging synform that at present reaches the 660 km-depth 43 

mantle discontinuity (Spakman and Hall, 2010; Hall and Spakman, 2015). Although 44 

some authors have argued that this highly concave slab geometry was created by two 45 
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independent subduction zones with opposite polarities (e.g., Cardwell and Isacks, 1978), 46 

there is now considerable evidence that it once comprised a single slab, deformed during 47 

slab rollback (e.g., Hamilton, 1979; Hall and Wilson, 2000; Milsom, 2001; Spakman and 48 

Hall, 2010; Hall, 2011, 2012; Pownall et al., 2013). 49 

Unlike most modern arcs, the Banda Arc does not preserve an oceanic trench 50 

since the rolling-back subduction zone has collided with the Australian continental 51 

margin. It has been proposed that the shape of this margin from the Jurassic 52 

approximated the modern Banda Arc (Hall, 2011), enclosing a D-shaped ‘Banda 53 

Embayment’ of dense Jurassic oceanic crust (the Proto-Banda Sea), that was readily 54 

subducted on arrival at the eastward-migrating trench (Spakman and Hall, 2010). Upon 55 

arc–continent collision, some buoyant continental crust of the Banda Embayment margin 56 

may have entered the upper mantle in the final stages of subduction (Royden and Husson, 57 

2009; Tate et al., 2015). During this time, there was thrusting towards the Australian 58 

continental margin to form the Seram Trough, the Timor Trough, and their adjacent fold-59 

and-thrust belts. 60 

Banda slab rollback has driven upper-plate extension since c. 16 Ma (Pownall et 61 

al., 2014), opening the North Banda Basin (Fig. 2) between 12.5 and 7.2 Ma, and the 62 

South Banda Basin between 6.5 and 3.5 Ma (Hinschberger et al., 2005). However, it 63 

remains unclear what caused the lithosphere beneath the easternmost Banda Sea to 64 

subside to its present depth of 7.2 km. Some authors have suggested it formed as a 65 

flexural response to a tightening of the Banda Arc’s curvature (Bowin et al., 1980) or the 66 

thrusting of the Banda Sea over the surrounding buoyant Australian continental margin 67 

(Hamilton, 1979). Others, who instead interpreted the Weber Deep as an extensional 68 
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basin (Charlton et al., 1991; Hinschberger et al., 2005; Spakman and Hall, 2010; Hall, 69 

2011, 2012), attributed E–W extension either directly to N–S shortening driven by the 70 

northward advance of Australia (Charlton et al., 1991), or to eastward slab rollback 71 

(Spakman and Hall, 2010; Hall, 2011, 2012) as discussed previously. The Weber Deep 72 

has also been explained as simply the result of sinking of the underlying Banda slab 73 

(Bowin et al., 1980; McCaffrey, 1988) without the requirement of rollback. 74 

Here, we propose that basin extension and subsidence were driven by the final 75 

stages of Banda Slab rollback, and accommodated by extension along a vast but 76 

previously-undocumented low-angle normal fault system—the Banda Detachment—77 

whose scarps form the eastern wall and floor of the Weber Deep. 78 

EVIDENCE FOR THE BANDA DETACHMENT 79 

Bathymetric Analysis 80 

Figures 1 and 3 are images derived from 15 m resolution MULTIBEAM 81 

bathymetry data of the eastern Banda Arc, which cover the Weber Deep and the Aru 82 

Trough. Significantly, these data show corrugated landforms on inliers within the abyssal 83 

sedimentary infill. The ridges and grooves of these features are straight, and are sub-84 

parallel (within 10°) with consistent NW–SE orientations across the entire basin floor 85 

(Fig. 1). The grooves are most pronounced in the northern (Fig. 3A), western (Fig. DR1 86 

in the GSA Data Repository1), and southern (Fig. 3B, DR2) parts of the Weber Deep, 87 

below 3 km depth. Large submarine slumps have blanketed much of the eastern rise. 88 

We interpret these lineated surfaces to comprise the footwall of a low-angle 89 

normal fault system (following Spencer, 2010) that closely approximates the morphology 90 

of the entire floor and outer wall of the easternmost Banda Sea. The grooved surfaces 91 
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could belong to a single low-angle fault, although they could alternatively mark 92 

subsidiary normal faults that shallow into a master detachment at slightly greater depth. 93 

The ‘Banda Detachment’ has a listric geometry, curving from a 12° dip adjacent to the 94 

eastern rim of the basin, to horizontal beneath the abyssal sedimentary infill, and 95 

becoming slightly back-rotated (by 1°) adjacent to the volcanic arc. We also interpret the 96 

grooves’ orientation and collective length to record a southeasterly slip direction of 120–97 

130°, along which the 450 km-long detachment must have slipped > 120 km. To our 98 

knowledge, this is the largest normal fault system exposed anywhere in the world’s 99 

oceans. 100 

Geological Evidence 101 

Seram and Ambon (Fig. 1) have undergone considerable lithospheric extension 102 

throughout much of the Neogene (Pownall et al., 2013, 2014), attributed to their eastward 103 

movement above the rolling-back Banda Slab (Spakman and Hall, 2010; Hall, 2011, 104 

2012). Initially, this extension exhumed hot, predominantly lherzolitic mantle rocks to 105 

shallow depths (~30 km), inducing melting and granulite-facies metamorphism of 106 

adjacent crust under ultrahigh-temperature (UHT; > 900 °C) conditions (Pownall et al., 107 

2014; Pownall, 2015). Since c. 6.5 Ma, peridotites and high-temperature migmatites of 108 

the resulting Kobipoto Complex (Pownall, 2015) have been exhumed beneath low-angle 109 

detachment faults to the present-day exposure level across Seram (Pownall et al., 2013). 110 

Our new field observations in the Wai Leklekan Mountains of eastern Seram 111 

(130.46°E, 3.62°S), and on the small Banda Arc islands of Tioor, Kasiui, Kur, and Fadol 112 

SE, of Seram (see Fig. 1), corroborate reports by Hamilton (1979), Bowin et al. (1980), 113 

Charlton et al. (1991) and Honthaas et al. (1997) of ultramafic rock and migmatite 114 
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outcrops. In addition, we identified low-angle (12°) fault scarps in southeast Seram (Fig. 115 

4A) and on Fadol (Fig. 4B) that we interpret as surface expressions of the Banda 116 

Detachment (Fig. 1). Low-angle extensional shear zones were also observed on the south 117 

coast of Kasiui (Fig. DR3). On Fadol, where ultramafic rocks and felsic gneisses 118 

comprise the footwall (Fig. 4B), a normal shear sense fault is the only way to account for 119 

the exhumation of upper-mantle/lower-crustal rocks (plus overlying Quaternary reefs) 120 

immediately adjacent to the 7 km Weber Deep.  121 

We therefore propose that peridotites exposed around the eastern Banda Arc, like 122 

the ultramafic rocks in western Seram, must have been exhumed from the shallow 123 

mantle, and are not fragments of ophiolites. The similarity in ages of gneisses on Seram 124 

(c. 16 Ma U–Pb zircon and 40Ar/39Ar biotite ages; Pownall et al., 2013) and on Kur (c. 17 125 

Ma K–Ar ages; Honthaas et al., 1997) further support a similar origin for exhumed lower 126 

crustal/upper mantle complexes around the northern and eastern Banda Arc. 127 

A final piece of evidence is that the grooves on the fault surfaces of the Weber 128 

Deep run parallel to strike-slip faults within the Kawa Shear Zone (KSZ) on Seram (Fig. 129 

1) – a major lithospheric fault zone incorporating slivers of exhumed mantle (Pownall et 130 

al., 2013). The Banda Detachment converges with the KSZ, and we interpret them as part 131 

of the same system. We infer the KSZ must have functioned as a right-lateral continental 132 

transform east of 129.5ºE in order to have separated NW–SE extension on the Banda 133 

Detachment from contraction on land in northern Seram and offshore. Although the 134 

current geomorphological expression of the KSZ indicates a left-lateral shear sense, there 135 

is microstructural evidence for a complex history of both left- and right-lateral motions 136 

(Pownall et al., 2013). 137 
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“ROLLING OPEN” THE WEBER DEEP 138 

To account for extension of the Weber Deep in a 130–310° direction, we interpret 139 

the driving force—rollback of the Banda Slab—to have followed the same southeastward 140 

trajectory. This inference is consistent with previous reconstructions by Spakman and 141 

Hall (2010) and Hall (2011, 2012), which depict southeastward migration of the Banda 142 

subduction zone over the last 10 myr. These plate reconstructions further suggest that the 143 

Weber Deep began to extend at 2 Ma (Hall, 2011, 2012), or alternatively 3 Ma 144 

(Hinschberger et al., 2005), during the final stages of rollback, synchronous with arc–145 

continent collision. The relatively thin cover of basin-floor sediments (Hamilton, 1979; 146 

Bowin et al., 1980) is indicative of young and rapid subsidence of the Weber Deep. The 147 

depth of the basin may also have been enhanced by downward flexure of the underlying 148 

(gently-dipping) Australian continental margin in response to the downward pull of the 149 

connected oceanic slab, as suggested for the shallower Western Alboran Basin which 150 

formed in a similar rollback setting in the Betic-Rif Arc (Do Couto et al., 2016). 151 

As illustrated in Figure 5, the Banda Detachment must bound the upper surface of 152 

a lithospheric wedge, likely derived from the fragmented Sula Spur (Bowin et al., 1980; 153 

Hall, 2011, 2012), that was transported southeast and thrust over the Banda Embayment 154 

continental margin. There is a terrane stack (cf. Lister and Forster, 2009, 2016) of 155 

Australian crust and lithospheric mantle slices, sandwiched between the Banda 156 

Detachment and the Frontal Thrust (labeled in Fig. 5). As observed, this stack includes 157 

lherzolites and high-temperature migmatites of the Kobipoto Complex (Pownall, 2015), 158 

and a number of core complexes which crop out across Seram, Ambon, and around the 159 

eastern archipelago. 160 
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There is no evidence from recent seismicity that the Banda Detachment is 161 

currently active. However, slip along the low-angle fault could feasibly operate through 162 

aseismic creep (e.g., Hreinsdóttir and Bennett, 2009), or may occur infrequently during 163 

catastrophic large-magnitude earthquakes (Wernicke, 1995). If the detachment is no 164 

longer active, its prominent topographic expression (Fig. 4) would suggest that its 165 

operation has only recently ceased. 166 

CONCLUSIONS AND WIDER IMPLICATIONS 167 

We conclude that southeastward rollback of the Banda slab since c. 2 Ma (Hall, 168 

2011, 2012) drove substantial extension of its forearc, accommodated principally by the 169 

450 km-long Banda Detachment, to form the 7.2 km Weber Deep (Fig. 5). Before this 170 

(16–2 Ma), the rolling-back Banda Slab was forced by the resistance of the D-shaped 171 

Australian continental margin to adopt its extreme curvature, which in turn drove the 172 

lithospheric extension, mantle exhumation, crustal melting, and high-temperature 173 

metamorphism across the northern and eastern arc. The Banda Arc illustrates how slab 174 

rollback in the modern Earth may drive oroclinal bending and substantial extension of 175 

outer arc and forearc regions. 176 

The Banda Detachment and Weber Deep may be amongst the largest of their kind 177 

in the modern Earth, but they are similar in scale to many ‘fossil’ examples preserved in 178 

older terranes. For instance, the Banda Detachment’s listric geometry, ‘upwarping’ 179 

toward the volcanic arc (cf. Spencer, 1984), and size, are all analogous to detachment 180 

faults characterizing the western USA’s Basin-and-Range Province (e.g., Lister and 181 

Davis, 1989). Furthermore, the grooved fault surfaces in the Weber Deep are similar in 182 

morphology and scale to the ‘turtlebacks’ (Wright et al., 1974) of California and Nevada. 183 
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It is a distinct possibility that several older highly-extended terranes, such as the Basin-184 

and-Range, may have also formed in response to major rollback events (cf. Dewey, 1980, 185 

1988; Lister et al., 1984; Royden, 1993) for which eastern Indonesia is a rare modern 186 

analogue. 187 
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 302 

FIGURE CAPTIONS 303 

 304 

Figure 1. Bathymetric map of the Weber Deep and Aru Trough, showing the location of 305 

the Banda Detachment and its relationship to the Kawa Shear Zone on Seram. Purple 306 

areas mark approximate exposures of exhumed upper-mantle/lower-crustal (Kobipoto 307 

Complex) rocks. MULTIBEAM data (15 m resolution) courtesy of TGS and GeoData 308 

Ventures. See Fig. 2 for location map; Figs. 3, DR1, and DR2 for enlargements of yellow 309 

boxes; Fig. 4 for photos of the Banda Detachment; Fig. 5 for cross section X–X; and Fig. 310 

DR4 for a 3D visualization. 311 

 312 

Figure 2. Map of eastern Indonesia showing the location of the Banda Arc, and the extent 313 

of MULTIBEAM bathymetry data used in Fig. 1. 314 

 315 

Figure 3. A, B: Enlargements of bathymetric map (marked by yellow boxes in Fig. 1) 316 

showing grooved normal fault surfaces comprising the fluted Banda Detachment 317 

footwall, analogous to the ‘turtlebacks’ of Death Valley (Wright et al., 1974). Note the 318 

consistent 130–310° orientations, which are parallel to the inferred slip direction and also 319 
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to the trend of the Kawa Shear Zone on Seram. Further examples are shown in Figs. DR1 320 

and DR2. 321 

 322 

Figure 4. The Banda Detachment, exposed on land in A: Eastern Seram (130.03°E, 323 

3.46°S), and B: the island of Fadol (131.94°E, 5.67°S).  Both fault planes dip towards the 324 

Banda Sea at 12° – identical to the dip inferred from Fig. 1. 325 

 326 

Figure 5. A: Cross section X–X (located in Figure 1; no vertical exaggeration) through 327 

the eastern Banda Arc, cut parallel to the grooves on fault surfaces and the proposed 328 

direction of rollback (130°SE). The geometry of the Proto-Banda Sea Slab is inferred 329 

from earthquake hypocenter locations catalogued by the International Seismological 330 

Centre Online Bulletin (isc.ac.uk). KSZ—Kawa Shear Zone. B: Enlargement of the 331 

Banda Detachment (2 × vertical exaggeration) showing schematically the configuration 332 

of over-riding continental allochthons (dark red). 333 

 334 

1GSA Data Repository item xxxxxx, additional examples of grooved normal fault scarps 335 

flooring the Weber Deep (Fig. DR1 and DR2) a low-angle extensional shear zone on 336 

Kasiui (Fig. DR3), and a 3D visualization of the Weber Deep (Fig. DR4), is available 337 

online at www.geosociety.org/pubs/ft2015.htm, or on request from 338 

editing@geosociety.org. 339 

mailto:editing@geosociety.org
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Figure DR3.  Low-angle extensional normal shear zone, south Kasiui (131.6776˚E,
4.5394˚S), dipping 20˚ to 345˚NNW.  Enlarged box is 0.6 m wide.
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Figure DR4.  3D visualization of the Weber Deep, produced from the MULTIBEAM data used also in Fig. 1.
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