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The collision of India with Asia

Abstract
We review the relative motion of India and Asia for the last 100 million years and present a revised
reconstruction for the India-Antarctica-Africa-North America-Eurasia plate circuit based on published
motion histories. Deformation of these continental masses during this time introduces uncertainties, as does
error in oceanic isochron age and location. Neglecting these factors, the data ipso facto allow the inference
that the motion of India relative to Eurasia was distinctly episodic. Although motion is likely to have varied
more smoothly than these results would allow, the geological record also suggests a sequence of distinct
episodes, at about the same times. Hence we suggest that no single event should be regarded as the collision of
India with Asia. The deceleration of the Indian plate commencing at ~65. Ma is matched by an equally
significant prior acceleration and this aspect must be taken into account in geodynamic scenarios proposed to
explain the collision of India with Asia.
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Abstract 8 

We review the relative motion of India and Asia for the last 100 million years and 9 

present a revised reconstruction for the India-Antarctica-Africa-NorthAmerica-10 

Eurasia plate circuit based on published motion histories. Deformation of these 11 

continental masses during this time introduces uncertainties, as does error in oceanic 12 

isochron age and location. Neglecting these factors, the data ipso facto allow the 13 

inference that the motion of India relative to Eurasia was distinctly episodic. Although 14 

motion is likely to have varied more smoothly than these results would allow, the 15 

geological record also suggests a sequence of distinct episodes, at about the same 16 

times. Hence we suggest that no single event should be regarded as the collision of 17 

India with Asia. The deceleration of the Indian plate commencing at ~65 Ma is 18 

matched by an equally significant prior acceleration and this aspect must be taken into 19 

account in geodynamic scenarios proposed to explain the collision of India with Asia. 20 
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1. Introduction 26 

The motion of the Indian plate relative to Eurasia led to the formation of the 27 

Himalayan mountain belt [Dewey and Bird, 1970; McKenzie and Sclater, 1971]. 28 

Information as to the history of the collision between India and Eurasia (i.e. when the 29 

last oceanic lithosphere was subducted and, continental lithosphere comes into contact 30 

with other continental lithosphere) can be extracted by examining the timing of 31 

deformation, metamorphism, erosion and sedimentation within the collisional belt 32 

[Aitchison et al., 2007; Guillot et al., 2003; 2008; Searle et al., 1987; 1988]. Some 33 

authors suggest that the evolution of the orogen involved several distinct accretion 34 

events [Aitchison et al., 2007; Lister et al., 2001], while others suggest a single 35 

collision event was followed by a protracted history [Beaumont et al., 2001; 2004; 36 

Jamieson et al., 2006; Leech, 2008; Noble et al., 2001; Searle et al., 1992; 1999; 37 

Vance and Harris, 1999; Walker et al., 2001]. Resolution of this controversy could be 38 

achieved by increased detail in terms of the analysis of what geochronological and 39 

structural data within the orogen imply in terms of the evolution of its tectono-40 

metamorphic stratigraphy, and of its architecture. Alternatively, the impact of 41 

individual accretion events might be evident in plate reconstructions of the relative 42 

motion of India to Eurasia using ocean floor magnetic anomaly data.  43 

 44 

Several different interpretations of  relative motion have been published. All of 45 

these rely on the motion of Africa relative to North America, and North America 46 

relative to Eurasia [e.g., Gaina et al., 2002; Müller et al., 1999; Rosenbaum et al., 47 

2002]. The aim of this paper is to update the India-Antarctica-Africa-North America-48 

Eurasia plate circuit, and reassess earlier interpretations in the light of this improved 49 

understanding as to the timing and location of oceanic isochrons. Each difference in 50 
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the interpretation of any component of the plate circuit [e.g., Copley et al. 2010; van 51 

Hinsbergen et al., in press] must be propagated through the entire plate assemblage, 52 

leading to changes in inferred relative velocity. In addition, as noted by Cande et al. 53 

[2010], the method of interpolation used to obtain relative motion at specific times in 54 

individual plate circuits must also be considered, as well as uncertainty.  55 

 56 

The relative motion of each plate is dependent on a series of Euler rotations, derived 57 

from multiple sources, with differing error and uncertainty. For the purposes of this 58 

paper, data is taken as provided by the authors and we do not independently attempt to 59 

propagate a quantitative analysis of error and uncertainty. While we agree that error 60 

and uncertainty in each component of a plate circuit adds complexity and increases 61 

the potential error in any reconstruction [e.g., see analyses in Copley et al., 2010, 62 

Molnar and Stock, 2009; van Hinsbergen et al., in press] we did not repeat 63 

calculations already published and/or taken into account by previous researchers (we 64 

will further discuss our rationale for this below). 65 

 66 

 67 

2. Relative motion histories for the Indian Plate 68 

The Indian plate consists of the Indian craton, as well as a significant portion of the 69 

Indian Ocean seafloor. The plate is bounded to the southeast by the Australian plate, 70 

to the southwest by the African plate and to the north and northeast by the Eurasian 71 

plate. To the north it terminates somewhere beneath Tibet and the Pamir. This 72 

northern boundary is currently considered as marked by the Indus-Zangpo Suture 73 

Zone [Thakur and Misra, 1984] (Figure 1). 74 

 75 
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Insert Figure 1. 76 

 77 

The earliest work on the relative motion history of the Indian plate was presented 78 

during the advent of plate tectonic theory [Heirtzler et al., 1968; Le Pichon, 1968; Le 79 

Pichon and Heirtzler, 1968; McKenzie and Sclater, 1971; Molnar and Tapponier, 80 

1975; Norton and Sclater, 1979; Sclater and Fisher, 1974]. As higher resolution data 81 

became available, these earlier models were refined, and new interpretations of 82 

magnetic data and bathymetry were produced [Dewey et al., 1989; Molnar et al., 83 

1988; Patriat and Achache, 1984; Patriat and Segoufin, 1988). These efforts continue 84 

as relative motion in various parts of the plate circuit becomes better understood 85 

[Cande et al., 2010; Copley et al., 2010; DeMets et al., 1994; 2005; Gaina et al., 2002; 86 

Gordon et al., 1990; 1998; Lee and Lawver 1995; Merkouriev and DeMets, 2006; 87 

Molnar and Stock, 2009; Rosenbaum et al., 2002; Royer and Chang, 1991; Royer et 88 

al., 1997; van Hinsbergen et al., in press; Wiens et al., 1985; 1986].  89 

 90 

 91 

3. Establishing the timing of collision from plate reconstructions 92 

Plate reconstruction are one the key pieces of 93 

evidence used to establish when the collision of the two continents occurred. Molnar 94 

and Tapponnier [1975] were the first to suggest that a decrease in the rate of 95 

northward motion of India from 100-112 mm/yr to 45-65 mm/yr at ~40 Ma 96 

represented the collision of India and Eurasia. Subsequent plate reconstructions also 97 

observed a decrease in the relative motion of India relative to Africa, Antarctica and 98 

Eurasia [Dewey et al., 1989; Molnar et al., 1988; Patriat and Achache, 1984; Patriat 99 

and Segoufin, 1988] (Figure 2 and Figure 3). While there were differences in each of 100 
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these models, they all attribute the deceleration of the Indian plate between 55-36 Ma 101 

to the collision of India and Asia. This is consistent with geological observations that 102 

suggest substantial changes occurred in the Himalayan orogen during this time period 103 

[e.g., Rowley, 1996; Guillot et al., 2003].  104 

 105 

Recent work [van Hinsbergen, in press] suggests the deceleration of India relative to 106 

Eurasia may be related to something other than the collision of the two continents. 107 

-108 

50 Ma. They suggested that plate acceleration and deceleration could be related to 109 

plume head arrival and increasing continent-plume distance respectively.  110 

 111 

 112 

4. Episodic versus smooth motion 113 

Several reconstructions of the Indian plate have shown that its motion has 114 

sporadically accelerated and decelerated during the past 100 Ma. Whilst this is not 115 

necessarily noticeable in all reconstructions of India relative to Eurasia [e.g., Copley 116 

et al., 2010; Dewey et al., 1989; Molnar and Stock, 2009; Patriat and Achache, 1984] 117 

(Figure 2 and Figure 4), such changes are observed in other parts of the plate circuit. 118 

119 

much more sporadic than the reconstruction of Molnar et al., [1988](Figure 3). There 120 

are also subtle differences between the relative motion of Afr121 

122 

McQuarrie et al., 2003; Rosenbaum et al., 2002] (Figure 5). Some of this variation is 123 

no doubt due to the uncertainty associated with each reconstruction. However, the 124 

question of whether plate motion is relatively smooth, or episodic remains unresolved 125 
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despite considerable improvement to our understanding of different parts of the plate 126 

circuit [Cande et al., 2010; Copley et al., 2010; DeMets et al., 1994; Gordon et al., 127 

1998; Lee and Lawver, 1995; Merkouriev and DeMets, 2006; Molnar and Stock, 128 

2009; Royer and Chang, 1991; Royer et al., 1997; van Hinsbergen, in press]. Data 129 

from high-resolution studies of 0-20 Ma magnetic isochrons also indicates that plate 130 

motion occurs in episodic pulses in the Indian Ocean [Merkouriev and DeMets; 131 

2006], and these pulses have been attributed to the crustal mechanics associated with 132 

the Himalayan orogeny [e.g., Merkouriev and DeMets, 2006; Molnar and Stock, 133 

2009].  134 

 135 

It is important to note that oceanic isochron data produces samples of relative 136 

displacement at discrete time intervals, and since these time intervals differ from one 137 

part of the plate circuit to another, the multiplicative effect in a plate circuit produces 138 

sharp changes in velocity. These are data artifacts and they should not be interpreted 139 

to imply rapid (i.e. <0.1 Ma) changes in velocity. In the real world, rheology would 140 

smooth any localized rapid change, but to remove such fluctuations by introducing 141 

smoothing and interpolation methods in a scientific paper runs the risk of inextricably 142 

mixing model and assumptions in a way that obscures the actual data. Therefore we 143 

have not done this. More importantly, since plate reconstructions that are based on 144 

oceanic isochrons a priori assume rigid lithosphere, we decided instead to consider 145 

the implications of the changes in velocity that can be inferred based on the observed 146 

data. We therefore propagate these datasets through the plate circuit in a way that is 147 

faithful to the rigid-plate assumption. 148 

 149 

Insert Figure 3. 150 
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Insert Figure 4. 151 

Insert Figure 5. 152 

 153 

 154 

5. Towards an integrated model 155 

156 

a set of instructions (e.g., Euler rotations). These instructions are used to transform the 157 

architecture of the modern day world back to some ancient configuration (i.e., a 158 

159 

availability of data (e.g., Euler poles derived from seafloor fracture zones and 160 

magnetic isochrons), or to different selections of the available data. In particular, 161 

different hypotheses originate by virtue of a sequence of linked assumptions, made 162 

through space and time. In consequence, as outlined above, as more and more data 163 

becomes available, the data and decisions that are employed in each reconstruction 164 

become increasingly difficult to compare with others. Therefore, we propose a more 165 

systematic approach, utilizing what we refer to as a 166 

Didactic Tree is to document the data, decisions and assumptions made in a given 167 

reconstruction and to graphically convey this information to the reader (Figure 6). The 168 

Didactic Tree is therefore a data construct that represents the knowledge/interpretation 169 

paths taken between the modern Earth and a particular Virtual World. This method 170 

therefore allows us to document, understand and easily access and assess the 171 

differences between different interpretations as to ancient Earth configurations. 172 

 173 

Insert Figure 6. 174 

 175 
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We used this technique to systematically record the data, decisions and assumptions 176 

from rigid-plate reconstructions of the Indian plate based on magnetic seafloor 177 

anomaly and fracture zone data (see Auxiliary Data [A1]). This technique allowed us 178 

to identify the lineage of data that was used in each reconstruction of the Indian plate, 179 

as well as the decisions and assumptions behind each tectonic reconstruction. We 180 

used the method to assess the relevance of specified Euler poles describing motion at 181 

any specific time, for any given plate. This allowed us to identify, for example, which 182 

Euler poles needed to be adjusted according to proposed changes in the geological 183 

timescale [Gradstein et al., 2004].  184 

 185 

Each Didactic Tree was created using the open source software XMind 186 

(www.xmind.net).  187 

 188 

This approach enabled systematic revision of relative motion of the Indian plate 189 

relative to Eurasia using already published rotation data (see Auxiliary Data [A2]). 190 

The ages of each Euler pole that were used in this reconstruction have been updated 191 

according to the most recent magnetic anomaly timescale [Gradstein et al., 2004]. 192 

However, we were unable to update the timescale of any of the Euler poles derived 193 

from Müller et al., [2008] as these workers report ages from their digital isochron 194 

map. 195 

 196 

Our reconstruction is based on a plate circuit of India  Antarctica  Africa  197 

North America  Europe between 84  0 Ma. Between 100  84 Ma we move India 198 

 Australia  Africa  North America  Europe.  The Euler poles for the motion 199 

of North America  Eurasia were derived from Gaina et al. [2002], Merkouriev and 200 

http://www.xmind.net/
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DeMets [2008] and Rosenbaum et al. [2002] (see Auxiliary Data [A2]). The Euler 201 

poles for the motion of Africa  North America were taken from the data presented 202 

in Müller et al. [1999] and Rosenbaum et al. [2002]. The motion histories for North 203 

America relative to Eurasia [Gaina et al., 2002; McQuarrie et al., 2003; Rosenbaum et 204 

al., 2002] and North America relative to Africa [McQuarrie et al., 2003; Müller et al., 205 

1999; Rosenbaum et al., 2002] are similar (Figure 5). However, each paper presents a 206 

number of rotation poles, where one may have a better resolution at a given time [e.g., 207 

Gaina et al., 2002 compared to Rosenbaum et al., 2002]. We therefore amalgamated 208 

the Euler poles to build a comprehensive dataset (see Auxiliary Data [A2]). 209 

 210 

211 

to Africa [Bernard et al., 2005; Jokat et al., 2003; König and Jokat, 2006; Lemaux et 212 

al., 2002; Patriat et al., 2008]. The Euler poles that were used to rotate India relative 213 

to Antarctica between 84 and 0 Ma were derived from Patriat [1987] and Patriat and 214 

Segoufin [1988]. The Euler poles that were used to rotate India relative to Australia 215 

between 100  84 Ma were derived from Müller et al. [2008]. In the reconstruction, 216 

we also restore the position of Australia, Iberia, Greenland and Madagascar according 217 

to the Euler poles presented in the Auxiliary Data [A2]. No significant overlaps were 218 

observed when all of the data was rotated back to 100 Ma. All of this information is 219 

summarized in Figure 7. 220 

 221 

Insert Figure 7. 222 

 223 

We chose to rotate India relative to Antarctica, rather than India relative to Somalia. 224 

While there is much higher resolution data available for part of the latter plate circuit, 225 
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there is also considerable uncertainty in terms of constraints as to the magnitude of 226 

crustal extension in the East-African Rift System. For example our investigation of 227 

the various reconstructions that rotate India relative to Somalia [e.g., Chu and Gordon, 228 

1999; Horner-Johnson et al., 2007; Lemaux et al., 2002; Royer et al., 2006] 229 

highlighted that there was contradiction between what these models proposed for the 230 

timing and geometry of crustal extension in the East-African Rift System (11  0 Ma), 231 

compared to field observations that suggest crustal extension began at ~32 Ma [Joffe 232 

and Garfunkel, 1987]. This discrepancy indicates that the problem in the India-233 

Somalia plate circuit cannot simply be resolved, e.g., by changing the age of the 11 234 

Ma Euler pole to 32 Ma.  235 

 236 

 237 

6. Reconstructing the motion history of the Indian plate 238 

Each reconstruction discussed in this paper was created with Pplates (version 2.0) 239 

deformable reconstruction software (downloadable from: 240 

http://rses.anu.edu.au/tectonics/programs/). The tracking point feature of this program 241 

was used to determine the velocity of the Indian plate relative to the Eurasian plate at 242 

0.001 Ma increments. This does not mean that we have an Euler pole at each 0.001 243 

244 

that we account for each Euler pole within the plate circuit. Pplates determines the 245 

location of a point to be tracked by applying all known Euler pole rotations to produce 246 

a discrete set of known positions (P1, P2 n), Pi = (xi, yi, zi) with corresponding 247 

times (t1, t2 n), where P1 is the initial position of the tracking point, and t1 = 0 Ma. 248 

 249 
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Using this feature, three tracking points were created on the Indian plate at 0 Ma 250 

(Western point = 26°N / 70°E; Central point = 28°N / 83°E and Eastern point = 26°N 251 

/ 92°E). These points were then rotated back in time according to the Euler poles used 252 

in the reconstruction. Only the central tracking point is shown in Figure 8. 253 

 254 

Insert Figure 8. 255 

 256 

These results imply that the Indian plate accelerated in several steps between 85-64 257 

Ma, with several minor decelerations in between (Figure 8). The period of net 258 

acceleration between 85-64 Ma was followed by rapid deceleration between 64-62 259 

Ma. The fluctuations in velocity continued after this point. Subsequent periods of 260 

plate acceleration occurred between 62-61 Ma, 55-52 Ma, 47-45 Ma, 20-19 Ma, 18-16 261 

Ma, 14-13 Ma and 11-10 Ma. Subsequent periods of deceleration occurred between 262 

60-58 Ma, 52-51 Ma, 48.5-47 Ma, 45-39.5 Ma, 26.5-25 Ma, 19-18.7 Ma, 15.5-14.5 263 

Ma, 12-11 Ma and 9.8-5.5 Ma (Figure 8). The Indian plate essentially had a steady-264 

state northward motion of ~55-60 mm/yr between 39.5-20 Ma. After 20 Ma, there 265 

were another series of rapid changes in acceleration and deceleration until ~9.8 Ma 266 

where the velocity gradually slowed from ~64 mm/yr to ~50 mm/yr at present. 267 

 268 

 269 

7. Discussion 270 

The simplest interpretation of the results above is to suggest that the Indian plate 271 

accelerated and decelerated several times during its northward progression between 272 

100 Ma and 0 Ma. We have already stated, however, that some of these rapid 273 

fluctuations in velocity may be data artifacts (see §4 where we discuss the 274 
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implications of episodic versus smooth motion). We agree that these variations can be 275 

removed by smoothing, although note that by under-sampling (see Figure 4) some 276 

authors have made the variation of velocity smoother than the actual data would 277 

allow. We also emphasize that there is a degree of circular logic in requiring data to 278 

be smoothed and thereafter concluding that India has moved smoothly northward 279 

without episodic variation in velocity. Modern geodynamic theory makes it well 280 

possible that the motion record reflects episodic variation in velocity, with each 281 

episode reflecting individual accretion events as India ploughed northwards towards 282 

Eurasia, across a seascape littered by continental ribbons, intra-oceanic arcs, and other 283 

bathymetric features. 284 

 285 

It is beyond the scope of this paper to review the timing of each geological event in 286 

the Alpine-Himalayan orogen and how these might possibly relate to our 287 

reconstruction. However, it is worth considering whether the episodic velocity of 288 

India might correspond with specific geological events. For instance, the Ladakh arc 289 

is thought to have accreted to the northern margin of India by ~45 Ma [Rowley et al., 290 

1996]. This accretion event might therefore correspond to any of the decelerations 291 

prior to ~45 Ma (e.g., 64-62 Ma, 60-58 Ma, 52-51 Ma, 48.5-47 Ma and potentially 45-292 

39 Ma). We note that other authors state that the Ladakh arc accreted to Eurasia 293 

before India arrived [Aitchison et al., 2007; Baxter et al., 2010; Guillot et al., 2003; 294 

2008; Petterson and Windley 1985; Rolland et al., 2000; 2002; Weinberg et al., 2000;] 295 

and thus that there is no consensus.  296 

 297 

The debate as to which continental ribbon or island arc chain accreted to what is 298 

dependent on how complex each worker envisages the Tethyan palaeogeography. For 299 
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instance, Khan et al. [2009] suggest that the Ladakh-Kohistan arc accreted to the 300 

northern margin of India because they classify the Spongtang massif and Ladakh-301 

Kohistan arc as the same system [Baxter et al., 2010]. Other workers consider these to 302 

be different terranes, stating the Spongtang massif accreted to the northern margin of 303 

India and the Ladakh-Kohistan arc accreted to the southern margin of Eurasia 304 

[Aitchison et al., 2007; Baxter et al., 2010; Petterson and Windley 1985]. The 305 

arguments that surround the obduction age of continental ribbons such as the 306 

Spongtang massif [Baxter et al., 2010; Corfield et al., 2001; Pedersen et al., 2001] 307 

preclude objective analysis as to whether a particular accretion event relates to a 308 

particular deceleration. Nevertheless, if we do accept that Tethys had a complex 309 

palaeogeography [Aitchison et al., 2007] and that the Indian plate can decelerate due 310 

to the effects of crustal accretion [e.g., Molnar and Tapponnier 1975] it is reasonable 311 

to assume that the Indian plate slowed more than once, and that each deceleration 312 

might relate to the accretion of a continental ribbon and/or associated volcanic or 313 

magmatic arcs. 314 

 315 

The debate becomes murkier when along strike variation in palaeogeography is 316 

considered. For example some components of the Kohistan-Ladakh arc evolved in an 317 

island arc setting, while other components (e.g., in eastern Ladakh) evolved from an 318 

island arc system into a continental arc [Rolland et al., 2000; 2002].  319 

 320 

Stratigraphic relations and the interpretation of geochemical analyses and 321 

geochronological data can provide constraints as to the timing of accretion events. 322 

The presence of 60 ± 10 Ma granitoids north and south of the Karakorum Thrust and 323 

Karakorum Fault can be interpreted to suggest that the Dras-Kohistan island arc had 324 
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accreted to Eurasia by this time [Weinberg et al., 2000]. Perhaps this accretion event 325 

is marked by deceleration of the Indian plate between 64-62 Ma or 60-58 Ma. 326 

However, if this island arc accreted before 60 Ma, it suggests that the <60 Ma 327 

volcanics and granitoids associated with the Ladakh-Kohistan arc were emplaced in a 328 

continental margin setting, contradicting the interpretation of geochemical data that 329 

suggests they were emplaced in an island arc setting [Weinberg and Dunlap 2000].  330 

 331 

Several workers have suggested that the timing of the India-Asia collision is 332 

constrained by the timing of high-pressure metamorphism. For instance, de Sigoyer et 333 

al., [2000] suggest the Indian crust locally passed through eclogite facies 334 

metamorphic conditions at 55 Ma  7 Ma and was exhumed by 48 ± 2 Ma. The Tso 335 

Morari eclogite might therefore correspond with deceleration of the Indian plate at 60-336 

58 Ma and/or 52-51 Ma. However, the eclogite and other high-pressure metamorphic 337 

assemblages do not necessarily indicate subduction of continental lithosphere [Lister 338 

and Forster 2009]. These rocks may instead represent the timing of an accretion event 339 

as a slice of rock that has undergone high-pressure metamorphism beneath a 340 

lithospheric scale megathrust and then exhumed during subsequent lithosphere-scale 341 

extension.  342 

 343 

In any case many different ages are found for the formation and subsequent 344 

exhumation of different terranes containing high-pressure rocks in the Himalaya, as 345 

well as along the length of the Alpine-Tethyan orogen [79-75 Ma, 70-65 Ma Sesia 346 

zone, Italian Western Alps: Rubatto et al., 2011]; [53-49 Ma, 44-38 Ma and 35-30 Ma 347 

Cycladic Eclogite-Blueschist, Greece: Forster and Lister 2005]; [47-46 Ma Kaghan 348 

Valley eclogite, Pakistan: Wilke et al., 2010] and these data can be interpreted as 349 
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representing evidence of multiple, episodic accretion events as Tethys closed [Lister 350 

et al., 2001; Lister and Forster 2009].  351 

 352 

If high-pressure metamorphism reflects accretion events rather than terminal collision, 353 

it follows that the collision of India and Eurasia might not have occurred by ~50 Ma. 354 

A growing body of work suggests India-Eurasia collision may not have occurred by 355 

~50 Ma and possibly occurred as late as ~34 Ma [Aitchison et al., 2007; Bera et al., 356 

2008; Henderson et al., in press]. We therefore consider that the deceleration of India 357 

between 45-39.5 Ma might reflect a period crustal shortening that led to the closure of 358 

an ocean basin at ~34 Ma (as determined from the oldest evidence of marine 359 

sedimentation in the Pengqu Formation, Qomolangma Tibet) [Aitchison et al., 2007; 360 

Wang et al., 2002]. As new data emerges from geological studies within the orogen 361 

itself greater clarity as to the significance of the velocity changes reported here will 362 

emerge. 363 

 364 

 365 

7.1 Uncertainty in Plate Reconstructions 366 

Many workers propose that they can provide a precise estimate of the uncertainty 367 

associated with Euler poles [e.g., Cande et al., 2010; Royer and Chang 1991] but we 368 

argue that the true uncertainty of a reconstruction involves many more factors than are 369 

currently taken into account. These include: (1) deformation within the plate circuit; 370 

(2) the uncertainty associated with the age of each of the sample that is used to define 371 

each magnetic isochron; (3) variations in different geological timescales [e.g., Cande 372 

and Kent, 1995; Gradstein et al., 2004]; (4) the precision and accuracy used to locate 373 

the survey vessel; (5) the precision and accuracy used to locate the dredge/drill 374 
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sample site below the survey vessel; (6) the precision and accuracy used to locate of 375 

the geophysical data collected below the survey vessel; (7) the precision and accuracy 376 

of GPS measurements, and (8) the precision and accuracy of pre-GPS measurements. 377 

We argue that if each of these factors were considered the uncertainty would be 378 

greater than is currently portrayed in plate reconstructions. This said, a completely 379 

different set of rules comes into play when considering the implications of the 380 

inferred time variation of velocity in individual parts of a plate circuit. For example, it 381 

may not be the case that uncertainty with respect to absolute velocity translates 382 

directly into uncertainty as to the magnitude of temporal changes in velocity. 383 

 384 

Some of the methods of calculating uncertainty of individual Euler poles are based on 385 

rough estimates. For example Cande et al. [2010] write (pp 6- Although it is 386 

possible to assign a separate error estimate to each data point, varying it, for 387 

example, for the type of navigation, this level of detail was beyond the scope of this 388 

study. Instead, based on our experience with other data sets, we generally assigned an 389 

estimate of 3.5 km for all magnetic anomaly points and 5 km for all fracture zone 390 

crossings. One major exception to this rule was that we assigned an error estimate of 391 

5 km to anomaly points older than anomaly 24o on the SWIR west of the Bain fracture 392 

zone where data coverage is particularly sparse and anomaly identifications are 393 

difficult due to the slow spreading rates   394 

 395 

396 

reconstruction might be related to errors due to the propagation of uncertainty within 397 

the plate circuit. However, in spite of considerable pressure exerted on us during the 398 

review process to ameliorate our views, our position remains that until we can reliably 399 
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assess the true uncertainty of the system we choose to interpret the velocity curve at 400 

face value (Figure 8). In other words the data is taken as it has been published, and the 401 

implications of these revisions to the temporal history of motion in individual parts of 402 

the plate circuit are propagated to produce the velocity curve ipso facto as it is 403 

presented in Figure 8. 404 

 405 

 406 

7.2 Deceleration of the Indian plate 407 

Other reconstructions suggest that the Indian plate decelerated only once between 55 408 

Ma and 35 Ma [e.g., Copley et al., 2010; Molnar and Stock 2009; Patriat and Achache 409 

1984; Tapponier and Molnar 1975]. The differences in interpretation can be attributed 410 

in part to the different Euler poles, plate circuits and timescales adopted in each 411 

reconstruction. These differences are summarized in the Didactic Trees that were 412 

compiled from each reconstruction (Auxiliary Dataset [A1]).  413 

 414 

Another contrast between our results and some reconstructions relate to the time 415 

interval that is sampled during a reconstruction. Figure 4 (continuous line) shows the 416 

417 

smooth and continuous changes in velocity. However, if we use the Euler pole data 418 

for India relative to Eurasia as it is presented in Copley et al. [2010] we find that the 419 

velocity curve that they propose (black line) does not match the input data (dotted 420 

line). The reason for this is because Copley 421 

arbitrary time points (i.e. 2.5 Ma intervals between 30 Ma and 0 Ma, and 5.0 Ma 422 

intervals between 75 Ma and 30 Ma) and simply joined the dots. The problem is that 423 

this artificially smoothed curve (black line) is not consistent with the data input 424 
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(dotted line) as it can only be produced through the omission of the full set of linearly 425 

interpolated velocities (Figure 4). 426 

 427 

Previous reconstructions of the Indian plate relative to the Eurasian plate suggest that 428 

India decelerated between ~50 Ma and 36 Ma [Copley et al. 2010; Dewey et al. 1989; 429 

Lee and Lawver 1995; Molnar and Stock 2009; Patriat and Achache 1984; van 430 

Hinsenberg et al., in press]. This single deceleration episode is often interpreted to 431 

represent the time when Indian and Eurasian continental crust collided [Molnar and 432 

Tapponier 1975; Patriat and Achache 1984]. However, our reconstruction suggests 433 

434 

We therefore consider the possibility that the timing of each deceleration might 435 

indicate a separate accretion event 436 

Ma and 0 Ma. This would imply that accretion events occurred at 64-62 Ma, 60-58 437 

Ma, 52-51 Ma, 48.5-47 Ma, 45-39.5 Ma, 26.5-25 Ma, 19-18.7 Ma, 15.5-14.5 Ma, 12-438 

11 Ma and 9.8-5.5 Ma. Some of these ages broadly correspond with ages that have 439 

been proposed for the collision of India and Asia [e.g., 35-34 Ma: Aitchison et al., 440 

2007; 55-50 Ma: Searle et al., 1987 and ~70 Ma: Yin and Harrison, 2000].  441 

 442 

 443 

7.3 Acceleration of the Indian plate 444 

Most interpretations of changes in the velocity of the Indian plate have focused on the 445 

deceleration of the Indian plate relative to Eurasia. We [and Van Hinsbergen et al., in 446 

press] argue th447 

reasons for both plate acceleration and as well as plate deceleration.  448 

 449 
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Our reconstruction suggests that the Indian plate accelerated several times during the 450 

past 100 Ma (85-64 Ma, 62-61 Ma, 55-52 Ma, 47-45 Ma, 20-19 Ma, 18-16 Ma, 14-13 451 

Ma and 11-10 Ma). These results suggest the Indian plate accelerated at different 452 

times than the reconstruction of van Hinsbergen et al. [in press]. The differences 453 

probably relate to the different plate circuits and data adopted in each reconstruction.  454 

 455 

456 

457 

over time [van Hinsbergen et al., in press]. For instance, van Hinsbergen et al. [in 458 

press] attributed a period of acceleration at ~90 Ma to the arrival of the Morondova 459 

mantle plume. However, these workers also discovered that the driving forces of a 460 

plume-head could not alone account for a period of rapid acceleration between 65-50 461 

Ma.  462 

 463 

Other factors that might impact on the geodynamic torque balance could include 464 

acceleration because of the existence of more than one subduction system operating in 465 

Tethys when the Indian plate rapidly accelerated. If multiple synchronous subduction 466 

systems existed, this would mean that at least twice as much material could be 467 

subducted and greater slab-pull forces that operated during specific intervals. If this 468 

were the case, it follows that plate deceleration might be associated with accretion 469 

events jamming one (or more) of the subduction zones, or the cessation of the 470 

operation of other subduction zones elsewhere in the plate circuit.  471 

 472 

Another explanation for these episodes of rapid plate motion may be that periods of 473 

deceleration represent times of strain accumulation within the plate circuit, and the 474 
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periods of acceleration represent the timing of failure during motion of an indentor. 475 

Periods of rapid acceleration may therefore indicate the timing of fault movement 476 

within the plate circuit. The timing of these accelerations may therefore correspond 477 

with episodes of movement on major crustal strike-slip such as the Karakorum Fault 478 

or the Oligo-Miocene Altyn-Tagh Fault [Robinson  2009; Yue et al., 2001]. 479 

  480 

The timing of movement of the Karakorum Fault is constrained by U/Pb SHRIMP 481 

dating of zircons from deformed granitoid dykes in Tangste that indicate deformation 482 

occurred after ~18 Ma [Searle et al., 1998]. This age is consistent with 149-167 km of 483 

displacement determined from tie-points of the Aghil Formation and slip rates 484 

between 6.1-12.1 mm/yr [Robinson 2009]. Other workers suggest that these dykes are 485 

16 Ma and were emplaced synchronously with deformation [Leloup et al., 2011; 486 

Rolland et al., 2009]. The Altyn-Tagh fault initiated during the latest Oligocene to 487 

earliest Miocene [Yue et al., 2001]. We therefore accept that the rapid changes in 488 

plate velocity at times <20 Ma might be reflected by movement on the major 489 

indentor-bounding strike-slip faults that developed during the ingress of the indentor. 490 

 491 

 492 

7.4 Other factors to consider 493 

We must also consider that the changes in the velocity of the Indian plate are related 494 

to geological events in other parts of the India-Eurasia plate circuit. For example, as 495 

we use the motion of the African plate to determine the motion of India relative to 496 

Eurasia, any time that Africa accelerates or decelerates this motion will be expressed 497 

 It is interesting to note that the timing of several decelerations (64-498 

62 Ma, 60-58 Ma, 52-51 Ma, 48.5-47 Ma, 45-39.5 Ma, 26.5-25 Ma, 19-18.7 Ma) 499 
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correspond with major accretion events identified along the length of the Alpine-500 

Tethyan orogen [Lister et al., 2001].  501 

 502 

Mechanical torque balancing occurs at all times between all tectonic plates. If the 503 

ancient Tethys Ocean had a complex palaeogeography and its demise involved 504 

multiple accretion events [Aitchison et al., 2007; Lister et al., 2001], it follows that 505 

there must have been times when certain plates lock-up and others move or deform. 506 

The state of the global lithospheric stress would no doubt be expressed in the fracture 507 

zones and magnetic anomalies at mid-ocean ridges (the key data input to tectonic 508 

plate reconstructions). If this were the case, it would mean that spreading velocity in 509 

510 

particular orogen such as the Himalaya. 511 

 512 

 513 

8. Conclusion 514 

Revised plate reconstructions of the Indian plate relative to the Eurasian plate indicate 515 

that the velocity of the Indian plate changed several times during the past 100 million 516 

years. These results differ to those of earlier reconstructions, but the differences can 517 

be attributed to different input data, different plate circuits and in some instances 518 

under sampling the time intervals that were used to produce velocity/time curves of 519 

the Indian plate. If previous workers attribute a major deceleration of the Indian plate 520 

at c. 50 Ma, it follows that multiple episodes of acceleration and deceleration could be 521 

indicative of several accretion events. This hypothesis is supported by observations of 522 

multiple episodes of deformation, magmatism and metamorphism observed along the 523 

Alpine-Himalayan orogen, not simply at c. 50 Ma. However, there are several other 524 
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geodynamic explanations as to why the velocity of the Indian plate changed over the 525 

past 100 Ma. The alternative explanations suggest such changes in velocity might 526 

relate to mantle-plumes, other parts of the India-Eurasia plate circuit or mechanical 527 

torqu528 

independent geological observations and geochronological data are the best 529 

constraints to determine the complex tectonic history of the Himalayan orogen; at 530 

least until higher resolution reconstruction data becomes available. 531 

 532 
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F I G UR E C APT I O NS 894 

Figure 1. Topographic and bathymetric map of Indian ocean showing the location of 895 

the boundaries of the African, Arabian, Antarctic, Australian, Indian and Eurasian 896 

897 

[Amante and Eakins 2009]. The location of plate boundaries was modified from Bird 898 

[2003]. 899 

 900 

Figure 2. Velocity (mm/yr) vs. time (Ma) plot of the Indian plate relative to the 901 

Eurasian plate according to; (a) Patriat and Achache [1984]; (b) Dewey et al. [1989], 902 

and; (c) Molnar and Stock [2009]. The timescales used in these plots are the same as 903 

was originally quoted in each reference, including a misquoted age of anomaly 22, in 904 

Dewey et al. [1989]. The velocity of the tracking point was recorded at 1 Ma intervals 905 

with Pplates (v2.0). 906 

 907 

Figure 3. Velocity (mm/yr) vs. time (Ma) plot of the Indian plate relative to the 908 

African plate according to: (a) Patriat and Segoufin [1988] and (b) Molnar et al., 909 

[1988]. The timescales used in these plots are the same as was originally quoted in 910 

each paper. The velocity of the tracking point was recorded at 1 Ma intervals with 911 

Pplates (v2.0). 912 

 913 

Figure 4. Velocity (mm/yr) vs. time (Ma) plot of the Indian plate relative to the 914 

Eurasian plate according to Copley et al. [2001]. These workers used a 2.5 Ma time 915 

interval between 30 - 0 Ma and a 5 Ma time interval between 75 - 30 Ma and 916 

 at ~50 Ma. However, 917 

using the same Euler poles for India relative to Eurasia with 1 Ma increments shows 918 
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the effect of under sampling/smoothing the data. The widely accepted deceleration of 919 

India at ~50 Ma may be associated with unintentional smoothing of results by 920 

interpolating tracking points with too broad a time interval. The timescale used in this 921 

plot is the same as was originally quoted in Copley et al. [2001]. 922 

 923 

Figure 5. Comparison of the motion of the African plate relative to the North 924 

American plate according to: (a) Müller et al. [1999]; (b) Rosenbaum et al. [2002], 925 

and; (c) McQuarrie et al. [2003], as well as a comparison of the velocity of the North 926 

America plate relative to the Eurasian plate according to: (d) Gaina et al. [2002]; (e) 927 

Rosenbaum et al. [2002], and; (f) McQuarrie et al. [2003]. The timescale used in these 928 

plots is the same as was originally used in each respective paper. The velocity of the 929 

tracking point was recorded at 1 Ma intervals with Pplates (v2.0). 930 

 931 

Figure 6. A fictional example of a Didactic Tree showing two models (1 and 2). This 932 

suggests that the worker who proposed Model 1 assumed that all plates are rigid, 933 

whilst the worker who proposed Model 2 assumed that all plates are deformable. 934 

Examining the Didactic Tree further we can identify that the timescale adopted in 935 

Model 1 was updated in 1972, whilst the timescale that was adopted in Model 2 was 936 

updated in 2004. This tree also informs the reader that both Model 1 and 2 are based 937 

on the same plate circuit. However, Model 1 is clearly based on much more magnetic 938 

seafloor anomaly data than Model 2. A future reconstruction may therefore use the 939 

detailed magnetic seafloor anomaly data of Model 1 in a deformable plate 940 

reconstruction, but update the ages of each anomaly according the most recent 941 

timescale that was adopted in Model 2. 942 

 943 
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Figure 7. The Didactic Tree according to the data, decisions and assumptions that 944 

were used our reconstruction of the motion history of the Indian plate relative to the 945 

Eurasian plate. Information about which Euler poles were used for a given time can 946 

be obtained from Auxiliary Dataset (A2). 947 

 948 

Figure 8. Velocity vs. time plot of the Indian plate relative to Eurasia according to our 949 

reconstruction [Auxiliary Dataset (A2)]. This plot shows that the velocity of the 950 

Indian plate was episodic and that there was more than one period of acceleration and 951 

deceleration. The plot was generated by rotating a point at 0 Ma (28°N / 83°E) 952 

according to the Euler poles adopted in this study. The position and velocity of the 953 

point were calculated at 0.001 Ma intervals with Pplates (v2.0). 954 
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