

University of Wollongong Research Online

Faculty of Science, Medicine and Health - Papers

Faculty of Science, Medicine and Health

2012

The collision of India with Asia

Lloyd T. White Australian National University

Gordon S. Lister Australian National University

Publication Details

White, L. T. & Lister, G. S. (2012). The collision of India with Asia. Journal of Geodynamics, 56-57 7-17.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

The collision of India with Asia

Abstract

We review the relative motion of India and Asia for the last 100 million years and present a revised reconstruction for the India-Antarctica-Africa-North America-Eurasia plate circuit based on published motion histories. Deformation of these continental masses during this time introduces uncertainties, as does error in oceanic isochron age and location. Neglecting these factors, the data ipso facto allow the inference that the motion of India relative to Eurasia was distinctly episodic. Although motion is likely to have varied more smoothly than these results would allow, the geological record also suggests a sequence of distinct episodes, at about the same times. Hence we suggest that no single event should be regarded as the collision of India with Asia. The deceleration of the Indian plate commencing at ~65. Ma is matched by an equally significant prior acceleration and this aspect must be taken into account in geodynamic scenarios proposed to explain the collision of India with Asia.

Disciplines

Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

White, L. T. & Lister, G. S. (2012). The collision of India with Asia. Journal of Geodynamics, 56-57 7-17.

-	

1	The collision of India with Asia
2	L. T. White* and G. S. Lister
3	
4	Research School of Earth Sciences,
5	The Australian National University, Canberra, ACT, 0200, Australia.
6	<u>lloyd.white@anu.edu.au</u>
7	
8	Abstract
9	We review the relative motion of India and Asia for the last 100 million years and
10	present a revised reconstruction for the India-Antarctica-Africa-NorthAmerica-
11	Eurasia plate circuit based on published motion histories. Deformation of these
12	continental masses during this time introduces uncertainties, as does error in oceanic
13	isochron age and location. Neglecting these factors, the data <i>ipso facto</i> allow the
14	inference that the motion of India relative to Eurasia was distinctly episodic. Although
15	motion is likely to have varied more smoothly than these results would allow, the
16	geological record also suggests a sequence of distinct episodes, at about the same
17	times. Hence we suggest that no single event should be regarded as the collision of
18	India with Asia. The deceleration of the Indian plate commencing at ~65 Ma is
19	matched by an equally significant prior acceleration and this aspect must be taken into
20	account in geodynamic scenarios proposed to explain the collision of India with Asia.
21	
22	Keywords: India, Himalaya, collision, orogen, reconstruction, tectonics, Tethys
23	
24	* Corresponding author email: <u>lloyd.white@anu.edu.au</u>
25	Phone: + 612 6125 4301 Fax: +612 6125 8253

26 1. Introduction

27 The motion of the Indian plate relative to Eurasia led to the formation of the 28 Himalayan mountain belt [Dewey and Bird, 1970; McKenzie and Sclater, 1971]. 29 Information as to the history of the collision between India and Eurasia (i.e. when the 30 last oceanic lithosphere was subducted and, continental lithosphere comes into contact 31 with other continental lithosphere) can be extracted by examining the timing of 32 deformation, metamorphism, erosion and sedimentation within the collisional belt 33 [Aitchison et al., 2007; Guillot et al., 2003; 2008; Searle et al., 1987; 1988]. Some 34 authors suggest that the evolution of the orogen involved several distinct accretion 35 events [Aitchison et al., 2007; Lister et al., 2001], while others suggest a single 36 collision event was followed by a protracted history [Beaumont et al., 2001; 2004; 37 Jamieson et al., 2006; Leech, 2008; Noble et al., 2001; Searle et al., 1992; 1999; 38 Vance and Harris, 1999; Walker et al., 2001]. Resolution of this controversy could be 39 achieved by increased detail in terms of the analysis of what geochronological and 40 structural data within the orogen imply in terms of the evolution of its tectono-41 metamorphic stratigraphy, and of its architecture. Alternatively, the impact of 42 individual accretion events might be evident in plate reconstructions of the relative 43 motion of India to Eurasia using ocean floor magnetic anomaly data.

44

Several different interpretations of India's relative motion have been published. All of
these rely on the motion of Africa relative to North America, and North America
relative to Eurasia [e.g., Gaina et al., 2002; Müller et al., 1999; Rosenbaum et al.,
2002]. The aim of this paper is to update the India-Antarctica-Africa-North AmericaEurasia plate circuit, and reassess earlier interpretations in the light of this improved
understanding as to the timing and location of oceanic isochrons. Each difference in

Page 2 of 50

51	the interpretation of any component of the plate circuit [e.g., Copley et al. 2010; van
52	Hinsbergen et al., in press] must be propagated through the entire plate assemblage,
53	leading to changes in inferred relative velocity. In addition, as noted by Cande et al.
54	[2010], the method of interpolation used to obtain relative motion at specific times in
55	individual plate circuits must also be considered, as well as uncertainty.
56	
57	The relative motion of each plate is dependent on a series of Euler rotations, derived
58	from multiple sources, with differing error and uncertainty. For the purposes of this
59	paper, data is taken as provided by the authors and we do not independently attempt to
60	propagate a quantitative analysis of error and uncertainty. While we agree that error
61	and uncertainty in each component of a plate circuit adds complexity and increases
62	the potential error in any reconstruction [e.g., see analyses in Copley et al., 2010,
63	Molnar and Stock, 2009; van Hinsbergen et al., in press] we did not repeat
64	calculations already published and/or taken into account by previous researchers (we
65	will further discuss our rationale for this below).
66	
67	
68	2. Relative motion histories for the Indian Plate
69	The Indian plate consists of the Indian craton, as well as a significant portion of the
70	Indian Ocean seafloor. The plate is bounded to the southeast by the Australian plate,
71	to the southwest by the African plate and to the north and northeast by the Eurasian
72	plate. To the north it terminates somewhere beneath Tibet and the Pamir. This
73	northern boundary is currently considered as marked by the Indus-Zangpo Suture
74	Zone [Thakur and Misra, 1984] (Figure 1).
75	

76 Insert Figure 1.

77

78	The earliest work on the relative motion history of the Indian plate was presented
79	during the advent of plate tectonic theory [Heirtzler et al., 1968; Le Pichon, 1968; Le
80	Pichon and Heirtzler, 1968; McKenzie and Sclater, 1971; Molnar and Tapponier,
81	1975; Norton and Sclater, 1979; Sclater and Fisher, 1974]. As higher resolution data
82	became available, these earlier models were refined, and new interpretations of
83	magnetic data and bathymetry were produced [Dewey et al., 1989; Molnar et al.,
84	1988; Patriat and Achache, 1984; Patriat and Segoufin, 1988). These efforts continue
85	as relative motion in various parts of the plate circuit becomes better understood
86	[Cande et al., 2010; Copley et al., 2010; DeMets et al., 1994; 2005; Gaina et al., 2002;
87	Gordon et al., 1990; 1998; Lee and Lawver 1995; Merkouriev and DeMets, 2006;
88	Molnar and Stock, 2009; Rosenbaum et al., 2002; Royer and Chang, 1991; Royer et
89	al., 1997; van Hinsbergen et al., in press; Wiens et al., 1985; 1986].
90	
91	
92	3. Establishing the timing of collision from plate reconstructions
93	Plate reconstructions of India's motion relative to Eurasia are one the key pieces of
94	evidence used to establish when the collision of the two continents occurred. Molnar
95	and Tapponnier [1975] were the first to suggest that a decrease in the rate of
96	northward motion of India from 100-112 mm/yr to 45-65 mm/yr at ~40 Ma
97	represented the collision of India and Eurasia. Subsequent plate reconstructions also
98	observed a decrease in the relative motion of India relative to Africa, Antarctica and
99	Eurasia [Dewey et al., 1989; Molnar et al., 1988; Patriat and Achache, 1984; Patriat
100	and Segoufin, 1988] (Figure 2 and Figure 3). While there were differences in each of

_	
5	
~	

101	these models, they all attribute the deceleration of the Indian plate between 55-36 Ma
102	to the collision of India and Asia. This is consistent with geological observations that
103	suggest substantial changes occurred in the Himalayan orogen during this time period
104	[e.g., Rowley, 1996; Guillot et al., 2003].
105	
106	Recent work [van Hinsbergen, in press] suggests the deceleration of India relative to
107	Eurasia may be related to something other than the collision of the two continents.
108	These workers highlighted that India's motion increased at ~ 90 Ma and between ~ 65 -
109	50 Ma. They suggested that plate acceleration and deceleration could be related to
110	plume head arrival and increasing continent-plume distance respectively.
111	
112	
113	4. Episodic versus smooth motion
114	Several reconstructions of the Indian plate have shown that its motion has
115	sporadically accelerated and decelerated during the past 100 Ma. Whilst this is not
116	necessarily noticeable in all reconstructions of India relative to Eurasia [e.g., Copley
117	et al., 2010; Dewey et al., 1989; Molnar and Stock, 2009; Patriat and Achache, 1984]
118	(Figure 2 and Figure 4), such changes are observed in other parts of the plate circuit.
119	For instance Patriat and Segoufin [1988] suggest India's motion relative to Africa is
120	much more sporadic than the reconstruction of Molnar et al., [1988](Figure 3). There
121	are also subtle differences between the relative motion of Africa's motion relative to
122	North America, and North America's motion relative to Eurasia [Gaina et al., 2002;
123	McQuarrie et al., 2003; Rosenbaum et al., 2002] (Figure 5). Some of this variation is
124	no doubt due to the uncertainty associated with each reconstruction. However, the
125	question of whether plate motion is relatively smooth, or episodic remains unresolved

6

126	despite considerable improvement to our understanding of different parts of the plate
127	circuit [Cande et al., 2010; Copley et al., 2010; DeMets et al., 1994; Gordon et al.,
128	1998; Lee and Lawver, 1995; Merkouriev and DeMets, 2006; Molnar and Stock,
129	2009; Royer and Chang, 1991; Royer et al., 1997; van Hinsbergen, in press]. Data
130	from high-resolution studies of 0-20 Ma magnetic isochrons also indicates that plate
131	motion occurs in episodic pulses in the Indian Ocean [Merkouriev and DeMets;
132	2006], and these pulses have been attributed to the crustal mechanics associated with
133	the Himalayan orogeny [e.g., Merkouriev and DeMets, 2006; Molnar and Stock,
134	2009].
135	
136	It is important to note that oceanic isochron data produces samples of relative
137	displacement at discrete time intervals, and since these time intervals differ from one
138	part of the plate circuit to another, the multiplicative effect in a plate circuit produces
139	sharp changes in velocity. These are data artifacts and they should not be interpreted
140	to imply rapid (i.e. <0.1 Ma) changes in velocity. In the real world, rheology would
141	smooth any localized rapid change, but to remove such fluctuations by introducing
142	smoothing and interpolation methods in a scientific paper runs the risk of inextricably

- 143 mixing model and assumptions in a way that obscures the actual data. Therefore we
- 144 have not done this. More importantly, since plate reconstructions that are based on
- 145 oceanic isochrons *a priori* assume rigid lithosphere, we decided instead to consider

the implications of the changes in velocity that can be inferred based on the observed

- 147 data. We therefore propagate these datasets through the plate circuit in a way that is
- 149

148

146

150 Insert Figure 3.

faithful to the rigid-plate assumption.

- 151 Insert Figure 4.
- 152 Insert Figure 5.
- 153
- 154
- 155 5. Towards an integrated model

In a mathematical sense, every tectonic reconstruction of the Earth's past is based on 156 a set of instructions (e.g., Euler rotations). These instructions are used to transform the 157 158 architecture of the modern day world back to some ancient configuration (i.e., a "Virtual World"). Different choices as to Virtual World architectures are related to the 159 160 availability of data (e.g., Euler poles derived from seafloor fracture zones and 161 magnetic isochrons), or to different selections of the available data. In particular, 162 different hypotheses originate by virtue of a sequence of linked assumptions, made 163 through space and time. In consequence, as outlined above, as more and more data 164 becomes available, the data and decisions that are employed in each reconstruction 165 become increasingly difficult to compare with others. Therefore, we propose a more 166 systematic approach, utilizing what we refer to as a "Didactic Tree". The purpose of a 167 Didactic Tree is to document the data, decisions and assumptions made in a given 168 reconstruction and to graphically convey this information to the reader (Figure 6). The 169 Didactic Tree is therefore a data construct that represents the knowledge/interpretation 170 paths taken between the modern Earth and a particular Virtual World. This method 171 therefore allows us to document, understand and easily access and assess the

- 172 differences between different interpretations as to ancient Earth configurations.
- 173

174 Insert Figure 6.

176	We used this technique to systematically record the data, decisions and assumptions
177	from rigid-plate reconstructions of the Indian plate based on magnetic seafloor
178	anomaly and fracture zone data (see Auxiliary Data [A1]). This technique allowed us
179	to identify the lineage of data that was used in each reconstruction of the Indian plate,
180	as well as the decisions and assumptions behind each tectonic reconstruction. We
181	used the method to assess the relevance of specified Euler poles describing motion at
182	any specific time, for any given plate. This allowed us to identify, for example, which
183	Euler poles needed to be adjusted according to proposed changes in the geological
184	timescale [Gradstein et al., 2004].
185	
186	Each Didactic Tree was created using the open source software XMind
187	(www.xmind.net).
188	
189	This approach enabled systematic revision of relative motion of the Indian plate
190	relative to Eurasia using already published rotation data (see Auxiliary Data [A2]).
191	The ages of each Euler pole that were used in this reconstruction have been updated
192	according to the most recent magnetic anomaly timescale [Gradstein et al., 2004].
193	However, we were unable to update the timescale of any of the Euler poles derived
194	from Müller et al., [2008] as these workers report ages from their digital isochron
195	map.
196	
197	Our reconstruction is based on a plate circuit of India \rightarrow Antarctica \rightarrow Africa \rightarrow
198	North America \rightarrow Europe between 84 – 0 Ma. Between 100 – 84 Ma we move India
199	\rightarrow Australia \rightarrow Africa \rightarrow North America \rightarrow Europe. The Euler poles for the motion
200	of North America \rightarrow Eurasia were derived from Gaina et al. [2002], Merkouriev and

201	DeMets [2008] and Rosenbaum et al. [2002] (see Auxiliary Data [A2]). The Euler
202	poles for the motion of Africa \rightarrow North America were taken from the data presented
203	in Müller et al. [1999] and Rosenbaum et al. [2002]. The motion histories for North
204	America relative to Eurasia [Gaina et al., 2002; McQuarrie et al., 2003; Rosenbaum et
205	al., 2002] and North America relative to Africa [McQuarrie et al., 2003; Müller et al.,
206	1999; Rosenbaum et al., 2002] are similar (Figure 5). However, each paper presents a
207	number of rotation poles, where one may have a better resolution at a given time [e.g.,
208	Gaina et al., 2002 compared to Rosenbaum et al., 2002]. We therefore amalgamated
209	the Euler poles to build a comprehensive dataset (see Auxiliary Data [A2]).
210	
211	We also combined the rotation data of several papers for Antarctica's motion relative
212	to Africa [Bernard et al., 2005; Jokat et al., 2003; König and Jokat, 2006; Lemaux et
213	al., 2002; Patriat et al., 2008]. The Euler poles that were used to rotate India relative
214	to Antarctica between 84 and 0 Ma were derived from Patriat [1987] and Patriat and
215	Segoufin [1988]. The Euler poles that were used to rotate India relative to Australia
216	between 100 – 84 Ma were derived from Müller et al. [2008]. In the reconstruction,
217	we also restore the position of Australia, Iberia, Greenland and Madagascar according
218	to the Euler poles presented in the Auxiliary Data [A2]. No significant overlaps were
219	observed when all of the data was rotated back to 100 Ma. All of this information is
220	summarized in Figure 7.
221	
222	Insert Figure 7.

223

224 We chose to rotate India relative to Antarctica, rather than India relative to Somalia.

225 While there is much higher resolution data available for part of the latter plate circuit,

226	there is also considerable uncertainty in terms of constraints as to the magnitude of
227	crustal extension in the East-African Rift System. For example our investigation of
228	the various reconstructions that rotate India relative to Somalia [e.g., Chu and Gordon,
229	1999; Horner-Johnson et al., 2007; Lemaux et al., 2002; Royer et al., 2006]
230	highlighted that there was contradiction between what these models proposed for the
231	timing and geometry of crustal extension in the East-African Rift System $(11 - 0 \text{ Ma})$,
232	compared to field observations that suggest crustal extension began at ~32 Ma [Joffe
233	and Garfunkel, 1987]. This discrepancy indicates that the problem in the India-
234	Somalia plate circuit cannot simply be resolved, e.g., by changing the age of the 11
235	Ma Euler pole to 32 Ma.
236	
237	
238	6. Reconstructing the motion history of the Indian plate
239	Each reconstruction discussed in this paper was created with Pplates (version 2.0)
240	deformable reconstruction software (downloadable from:
241	http://rses.anu.edu.au/tectonics/programs/). The tracking point feature of this program
242	was used to determine the velocity of the Indian plate relative to the Eurasian plate at
243	0.001 Ma increments. This does not mean that we have an Euler pole at each 0.001
244	Ma increment, but that we sample India's velocity at 0.001 Ma increments to ensure
245	that we account for each Euler pole within the plate circuit. Pplates determines the
246	location of a point to be tracked by applying all known Euler pole rotations to produce
247	a discrete set of known positions ($P_1, P_2,, P_n$), $P_i = (x_i, y_i, z_i)$ with corresponding
248	times (t_1 , t_2 ,, t_n), where P_1 is the initial position of the tracking point, and $t_1 = 0$ Ma.

- 4	
- 1	
1	1

250	Using this feature, three tracking points were created on the Indian plate at 0 Ma
251	(Western point = 26° N / 70° E; Central point = 28° N / 83° E and Eastern point = 26° N
252	/ 92°E). These points were then rotated back in time according to the Euler poles used
253	in the reconstruction. Only the central tracking point is shown in Figure 8.
254	
255	Insert Figure 8.
256	
257	These results imply that the Indian plate accelerated in several steps between 85-64
258	Ma, with several minor decelerations in between (Figure 8). The period of net
259	acceleration between 85-64 Ma was followed by rapid deceleration between 64-62
260	Ma. The fluctuations in velocity continued after this point. Subsequent periods of
261	plate acceleration occurred between 62-61 Ma, 55-52 Ma, 47-45 Ma, 20-19 Ma, 18-16
262	Ma, 14-13 Ma and 11-10 Ma. Subsequent periods of deceleration occurred between
263	60-58 Ma, 52-51 Ma, 48.5-47 Ma, 45-39.5 Ma, 26.5-25 Ma, 19-18.7 Ma, 15.5-14.5
264	Ma, 12-11 Ma and 9.8-5.5 Ma (Figure 8). The Indian plate essentially had a steady-
265	state northward motion of ~55-60 mm/yr between 39.5-20 Ma. After 20 Ma, there
266	were another series of rapid changes in acceleration and deceleration until ~9.8 Ma
267	where the velocity gradually slowed from ~ 64 mm/yr to ~ 50 mm/yr at present.
268	
269	

- 270 7. Discussion
- 271 The simplest interpretation of the results above is to suggest that the Indian plate
- accelerated and decelerated several times during its northward progression between
- 273 100 Ma and 0 Ma. We have already stated, however, that some of these rapid
- 274 fluctuations in velocity may be data artifacts (see §4 where we discuss the

(어리님[[리미

275 implications of episodic versus smooth motion). We agree that these variations can be 276 removed by smoothing, although note that by under-sampling (see Figure 4) some 277 authors have made the variation of velocity smoother than the actual data would 278 allow. We also emphasize that there is a degree of circular logic in requiring data to 279 be smoothed and thereafter concluding that India has moved smoothly northward 280 without episodic variation in velocity. Modern geodynamic theory makes it well 281 possible that the motion record reflects episodic variation in velocity, with each 282 episode reflecting individual accretion events as India ploughed northwards towards 283 Eurasia, across a seascape littered by continental ribbons, intra-oceanic arcs, and other 284 bathymetric features. 285 It is beyond the scope of this paper to review the timing of each geological event in 286 287 the Alpine-Himalayan orogen and how these might possibly relate to our 288 reconstruction. However, it is worth considering whether the episodic velocity of 289 India might correspond with specific geological events. For instance, the Ladakh arc 290 is thought to have accreted to the northern margin of India by ~45 Ma [Rowley et al., 291 1996]. This accretion event might therefore correspond to any of the decelerations 292 prior to ~45 Ma (e.g., 64-62 Ma, 60-58 Ma, 52-51 Ma, 48.5-47 Ma and potentially 45-293 39 Ma). We note that other authors state that the Ladakh arc accreted to Eurasia 294 before India arrived [Aitchison et al., 2007; Baxter et al., 2010; Guillot et al., 2003; 295 2008; Petterson and Windley 1985; Rolland et al., 2000; 2002; Weinberg et al., 2000;] 296 and thus that there is no consensus. 297

298 The debate as to which continental ribbon or island arc chain accreted to what is

299 dependent on how complex each worker envisages the Tethyan palaeogeography. For

300 instance, Khan et al. [2009] suggest that the Ladakh-Kohistan arc accreted to the 301 northern margin of India because they classify the Spongtang massif and Ladakh-Kohistan arc as the same system [Baxter et al., 2010]. Other workers consider these to 302 303 be different terranes, stating the Spongtang massif accreted to the northern margin of 304 India and the Ladakh-Kohistan arc accreted to the southern margin of Eurasia [Aitchison et al., 2007; Baxter et al., 2010; Petterson and Windley 1985]. The 305 306 arguments that surround the obduction age of continental ribbons such as the 307 Spongtang massif [Baxter et al., 2010; Corfield et al., 2001; Pedersen et al., 2001] 308 preclude objective analysis as to whether a particular accretion event relates to a 309 particular deceleration. Nevertheless, if we do accept that Tethys had a complex 310 palaeogeography [Aitchison et al., 2007] and that the Indian plate can decelerate due 311 to the effects of crustal accretion [e.g., Molnar and Tapponnier 1975] it is reasonable 312 to assume that the Indian plate slowed more than once, and that each deceleration might relate to the accretion of a continental ribbon and/or associated volcanic or 313 314 magmatic arcs. 315 316 The debate becomes murkier when along strike variation in palaeogeography is 317 considered. For example some components of the Kohistan-Ladakh arc evolved in an 318 island arc setting, while other components (e.g., in eastern Ladakh) evolved from an 319 island arc system into a continental arc [Rolland et al., 2000; 2002]. 320 321 Stratigraphic relations and the interpretation of geochemical analyses and

322 geochronological data can provide constraints as to the timing of accretion events.

323 The presence of 60 ± 10 Ma granitoids north and south of the Karakorum Thrust and

324 Karakorum Fault can be interpreted to suggest that the Dras-Kohistan island arc had

1	4

325	accreted to Eurasia by this time [Weinberg et al., 2000]. Perhaps this accretion event
326	is marked by deceleration of the Indian plate between 64-62 Ma or 60-58 Ma.
327	However, if this island arc accreted before 60 Ma, it suggests that the <60 Ma
328	volcanics and granitoids associated with the Ladakh-Kohistan arc were emplaced in a
329	continental margin setting, contradicting the interpretation of geochemical data that
330	suggests they were emplaced in an island arc setting [Weinberg and Dunlap 2000].
331	
332	Several workers have suggested that the timing of the India-Asia collision is
333	constrained by the timing of high-pressure metamorphism. For instance, de Sigoyer et
334	al., [2000] suggest the Indian crust locally passed through eclogite facies
335	metamorphic conditions at 55 Ma \pm 7 Ma and was exhumed by 48 \pm 2 Ma. The Tso
336	Morari eclogite might therefore correspond with deceleration of the Indian plate at 60-
337	58 Ma and/or 52-51 Ma. However, the eclogite and other high-pressure metamorphic
338	assemblages do not necessarily indicate subduction of continental lithosphere [Lister
339	and Forster 2009]. These rocks may instead represent the timing of an accretion event
340	as a slice of rock that has undergone high-pressure metamorphism beneath a
341	lithospheric scale megathrust and then exhumed during subsequent lithosphere-scale
342	extension.
343	
344	In any case many different ages are found for the formation and subsequent
345	exhumation of different terranes containing high-pressure rocks in the Himalaya, as

- 346 well as along the length of the Alpine-Tethyan orogen [79-75 Ma, 70-65 Ma Sesia
- zone, Italian Western Alps: Rubatto et al., 2011]; [53-49 Ma, 44-38 Ma and 35-30 Ma
- 348 Cycladic Eclogite-Blueschist, Greece: Forster and Lister 2005]; [47-46 Ma Kaghan
- 349 Valley eclogite, Pakistan: Wilke et al., 2010] and these data can be interpreted as

representing evidence of multiple, episodic accretion events as Tethys closed [Lister
et al., 2001; Lister and Forster 2009].

352

353	If high-pressure metamorphism reflects accretion events rather than terminal collision,
354	it follows that the collision of India and Eurasia might not have occurred by ~50 Ma.
355	A growing body of work suggests India-Eurasia collision may not have occurred by
356	~50 Ma and possibly occurred as late as ~34 Ma [Aitchison et al., 2007; Bera et al.,
357	2008; Henderson et al., in press]. We therefore consider that the deceleration of India
358	between 45-39.5 Ma might reflect a period crustal shortening that led to the closure of
359	an ocean basin at \sim 34 Ma (as determined from the oldest evidence of marine
360	sedimentation in the Pengqu Formation, Qomolangma Tibet) [Aitchison et al., 2007;
361	Wang et al., 2002]. As new data emerges from geological studies within the orogen
362	itself greater clarity as to the significance of the velocity changes reported here will
363	emerge.

364

365

366 <u>7.1 Uncertainty in Plate Reconstructions</u>

367 Many workers propose that they can provide a precise estimate of the uncertainty associated with Euler poles [e.g., Cande et al., 2010; Royer and Chang 1991] but we 368 369 argue that the true uncertainty of a reconstruction involves many more factors than are 370 currently taken into account. These include: (1) deformation within the plate circuit; (2) the uncertainty associated with the age of each of the sample that is used to define 371 372 each magnetic isochron; (3) variations in different geological timescales [e.g., Cande and Kent, 1995; Gradstein et al., 2004]; (4) the precision and accuracy used to locate 373 374 the survey vessel; (5) the precision and accuracy used to locate the dredge/drill

Page 15 of 50

375 sample site below the survey vessel; (6) the precision and accuracy used to locate of 376 the geophysical data collected below the survey vessel; (7) the precision and accuracy 377 of GPS measurements, and (8) the precision and accuracy of pre-GPS measurements. 378 We argue that if each of these factors were considered the uncertainty would be 379 greater than is currently portrayed in plate reconstructions. This said, a completely 380 different set of rules comes into play when considering the implications of the 381 inferred time variation of velocity in individual parts of a plate circuit. For example, it 382 may not be the case that uncertainty with respect to absolute velocity translates 383 directly into uncertainty as to the magnitude of temporal changes in velocity. 384 385 Some of the methods of calculating uncertainty of individual Euler poles are based on 386 rough estimates. For example Cande et al. [2010] write (pp 6-7) "Although it is 387 possible to assign a separate error estimate to each data point, varying it, for example, for the type of navigation, this level of detail was beyond the scope of this 388 study. Instead, based on our experience with other data sets, we generally assigned an 389 estimate of 3.5 km for all magnetic anomaly points and 5 km for all fracture zone 390 391 crossings. One major exception to this rule was that we assigned an error estimate of 392 5 km to anomaly points older than anomaly 240 on the SWIR west of the Bain fracture 393 zone where data coverage is particularly sparse and anomaly identifications are difficult due to the slow spreading rates." 394 395 396 We acknowledge that the changes in India's velocity produced in our plate 397 reconstruction might be related to errors due to the propagation of uncertainty within

398 the plate circuit. However, in spite of considerable pressure exerted on us during the

399 review process to ameliorate our views, our position remains that until we can reliably

400	assess the true uncertainty of the system we choose to interpret the velocity curve at
401	face value (Figure 8). In other words the data is taken as it has been published, and the
402	implications of these revisions to the temporal history of motion in individual parts of
403	the plate circuit are propagated to produce the velocity curve <i>ipso facto</i> as it is
404	presented in Figure 8.
405	
406	
407	7.2 Deceleration of the Indian plate
408	Other reconstructions suggest that the Indian plate decelerated only once between 55
409	Ma and 35 Ma [e.g., Copley et al., 2010; Molnar and Stock 2009; Patriat and Achache
410	1984; Tapponier and Molnar 1975]. The differences in interpretation can be attributed
411	in part to the different Euler poles, plate circuits and timescales adopted in each
412	reconstruction. These differences are summarized in the Didactic Trees that were
413	compiled from each reconstruction (Auxiliary Dataset [A1]).
414	
415	Another contrast between our results and some reconstructions relate to the time
416	interval that is sampled during a reconstruction. Figure 4 (continuous line) shows the
417	variation of India's velocity over time according to Copley et al. [2010], and implies
418	smooth and continuous changes in velocity. However, if we use the Euler pole data
419	for India relative to Eurasia as it is presented in Copley et al. [2010] we find that the
420	velocity curve that they propose (black line) does not match the input data (dotted
421	line). The reason for this is because Copley et al. [2010] sampled India's velocity at
422	arbitrary time points (i.e. 2.5 Ma intervals between 30 Ma and 0 Ma, and 5.0 Ma
423	intervals between 75 Ma and 30 Ma) and simply joined the dots. The problem is that

424 this artificially smoothed curve (black line) is not consistent with the data input

425 (dotted line) as it can only be produced through the omission of the full set of linearly426 interpolated velocities (Figure 4).

427

428	Previous reconstructions of the Indian plate relative to the Eurasian plate suggest that
429	India decelerated between ~50 Ma and 36 Ma [Copley et al. 2010; Dewey et al. 1989;
430	Lee and Lawver 1995; Molnar and Stock 2009; Patriat and Achache 1984; van
431	Hinsenberg et al., in press]. This single deceleration episode is often interpreted to
432	represent the time when Indian and Eurasian continental crust collided [Molnar and
433	Tapponier 1975; Patriat and Achache 1984]. However, our reconstruction suggests
434	that India's velocity accelerated and decelerated several times over the past 100 Ma.
435	We therefore consider the possibility that the timing of each deceleration might
436	indicate a separate accretion event during India's northward progression between 100
437	Ma and 0 Ma. This would imply that accretion events occurred at 64-62 Ma, 60-58
438	Ma, 52-51 Ma, 48.5-47 Ma, 45-39.5 Ma, 26.5-25 Ma, 19-18.7 Ma, 15.5-14.5 Ma, 12-
439	11 Ma and 9.8-5.5 Ma. Some of these ages broadly correspond with ages that have
440	been proposed for the collision of India and Asia [e.g., 35-34 Ma: Aitchison et al.,
441	2007; 55-50 Ma: Searle et al., 1987 and ~70 Ma: Yin and Harrison, 2000].
442	

443

444 7.3 Acceleration of the Indian plate

445 Most interpretations of changes in the velocity of the Indian plate have focused on the

446 deceleration of the Indian plate relative to Eurasia. We [and Van Hinsbergen et al., in

447 press] argue that geodynamic explanations for India's motion must include the

448 reasons for both plate acceleration and as well as plate deceleration.

449

450	Our reconstruction suggests that the Indian plate accelerated several times during the
451	past 100 Ma (85-64 Ma, 62-61 Ma, 55-52 Ma, 47-45 Ma, 20-19 Ma, 18-16 Ma, 14-13
452	Ma and 11-10 Ma). These results suggest the Indian plate accelerated at different
453	times than the reconstruction of van Hinsbergen et al. [in press]. The differences
454	probably relate to the different plate circuits and data adopted in each reconstruction.
455	
456	Whilst it seems logical that India's deceleration would relate to the collision of India
457	and Asia, there are other geodynamic explanations that may explain India's velocity
458	over time [van Hinsbergen et al., in press]. For instance, van Hinsbergen et al. [in
459	press] attributed a period of acceleration at ~90 Ma to the arrival of the Morondova
460	mantle plume. However, these workers also discovered that the driving forces of a
461	plume-head could not alone account for a period of rapid acceleration between 65-50
462	Ma.
463	

464 Other factors that might impact on the geodynamic torque balance could include 465 acceleration because of the existence of more than one subduction system operating in 466 Tethys when the Indian plate rapidly accelerated. If multiple synchronous subduction 467 systems existed, this would mean that at least twice as much material could be 468 subducted and greater slab-pull forces that operated during specific intervals. If this 469 were the case, it follows that plate deceleration might be associated with accretion 470 events jamming one (or more) of the subduction zones, or the cessation of the 471 operation of other subduction zones elsewhere in the plate circuit. 472

473 Another explanation for these episodes of rapid plate motion may be that periods of

474 deceleration represent times of strain accumulation within the plate circuit, and the

20

475	periods of acceleration represent the timing of failure during motion of an indentor.
476	Periods of rapid acceleration may therefore indicate the timing of fault movement
477	within the plate circuit. The timing of these accelerations may therefore correspond
478	with episodes of movement on major crustal strike-slip such as the Karakorum Fault
479	or the Oligo-Miocene Altyn-Tagh Fault [Robinson 2009; Yue et al., 2001].
480	
481	The timing of movement of the Karakorum Fault is constrained by U/Pb SHRIMP
482	dating of zircons from deformed granitoid dykes in Tangste that indicate deformation
483	occurred after ~18 Ma [Searle et al., 1998]. This age is consistent with 149-167 km of
484	displacement determined from tie-points of the Aghil Formation and slip rates
485	between 6.1-12.1 mm/yr [Robinson 2009]. Other workers suggest that these dykes are
486	16 Ma and were emplaced synchronously with deformation [Leloup et al., 2011;
487	Rolland et al., 2009]. The Altyn-Tagh fault initiated during the latest Oligocene to
488	earliest Miocene [Yue et al., 2001]. We therefore accept that the rapid changes in
489	plate velocity at times <20 Ma might be reflected by movement on the major
490	indentor-bounding strike-slip faults that developed during the ingress of the indentor.
491	
492	
493	7.4 Other factors to consider
494	We must also consider that the changes in the velocity of the Indian plate are related

495 to geological events in other parts of the India-Eurasia plate circuit. For example, as

- 496 we use the motion of the African plate to determine the motion of India relative to
- 497 Eurasia, any time that Africa accelerates or decelerates this motion will be expressed
- 498 in India's motion. It is interesting to note that the timing of several decelerations (64-
- 499 62 Ma, 60-58 Ma, 52-51 Ma, 48.5-47 Ma, 45-39.5 Ma, 26.5-25 Ma, 19-18.7 Ma)

500 correspond with major accretion events identified along the length of the Alpine-501 Tethyan orogen [Lister et al., 2001].

502

503	Mechanical torque balancing occurs at all times between all tectonic plates. If the
504	ancient Tethys Ocean had a complex palaeogeography and its demise involved
505	multiple accretion events [Aitchison et al., 2007; Lister et al., 2001], it follows that
506	there must have been times when certain plates lock-up and others move or deform.
507	The state of the global lithospheric stress would no doubt be expressed in the fracture
508	zones and magnetic anomalies at mid-ocean ridges (the key data input to tectonic
509	plate reconstructions). If this were the case, it would mean that spreading velocity in
510	the world's oceans is more an outcome of global torque balancing, rather than one
511	particular orogen such as the Himalaya.

512

513

514 8. Conclusion

Revised plate reconstructions of the Indian plate relative to the Eurasian plate indicate 515 516 that the velocity of the Indian plate changed several times during the past 100 million 517 years. These results differ to those of earlier reconstructions, but the differences can 518 be attributed to different input data, different plate circuits and in some instances 519 under sampling the time intervals that were used to produce velocity/time curves of 520 the Indian plate. If previous workers attribute a major deceleration of the Indian plate 521 at c. 50 Ma, it follows that multiple episodes of acceleration and deceleration could be 522 indicative of several accretion events. This hypothesis is supported by observations of 523 multiple episodes of deformation, magmatism and metamorphism observed along the 524 Alpine-Himalayan orogen, not simply at c. 50 Ma. However, there are several other

2	2
2	2

525	geodynamic explanations as to why the velocity of the Indian plate changed over the
526	past 100 Ma. The alternative explanations suggest such changes in velocity might
527	relate to mantle-plumes, other parts of the India-Eurasia plate circuit or mechanical
528	torque balancing between the world's tectonic plates. We therefore suggest that
529	independent geological observations and geochronological data are the best
530	constraints to determine the complex tectonic history of the Himalayan orogen; at
531	least until higher resolution reconstruction data becomes available.
532	
533	
534	9. Acknowledgements
535	This research utilized the <i>Pplates</i> deformable plate global tectonic reconstruction
536	software (http://rses.anu.edu.au/tectonics/programs/). We thank Sam Hart for writing
537	the computer code that made this study possible. Lloyd White is grateful for the
538	support of the John Conrad Jaeger Scholarship provided by the Research School of
539	Earth Sciences and an Australian Postgraduate Award provided by the Australian
540	Government. Research support was provided Australian Research Council Discovery
541	Grant DP0877274 "Tectonic mode switches and the nature of orogenesis". We thank
542	Dietmar Müller, Jason Ali and Jonathan Aitchison for providing constructive
543	feedback prior to the submission of this manuscript. We also thank the editor Yann
544	Rolland, as well as Douwe van Hinsbergen and an anonymous reviewer for their
545	comments.
546	
547	
548	

550 .	10.	Refei	rences

- 551 Aitchison, J.C., Ali, J.R., Davis, A.M., 2007. When and where did India and Asia
- collide? Journal of Geophysical Research, 112, BO5423, doi:10.1029/2006JB004706.

553

- Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model:
- 555 Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS
- 556 NGDC-24, 19 pp, March, 2009.

557

- 558 Baxter, A.T., Aitchison, J.C., Ali, J.R., Zyabrev, S.V. 2010. Early Cretaceous
- 559 radiolarians from the Spongtang massif, Ladakh, NW India: implications for Neo-
- 560 Tethyan evolution. Journal of the Geological Society, London, 167, 511-517.

561

562 Bera, M.K., Sarkar, A., Chakraborty, P.P., Loyal, R.S., Sanyal, P. 2008. Marine to

563 continental transition in Himalayan foreland. GSA Bulletin, 120, 1214-1232.

564

- 565 Bernard, A., Munschy, M., Rotsein, Y., Sauter, D., 2005. Refined spreading history at
- the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data.
- 567 Geophysical Journal International, 162, 765-778.
- 568
- 569 Bird, P., 2003. An updated digital model of plate boundaries. Geochemistry,
- 570 Geophysics, Geosystems, 4(3), 1027, doi:10.1029/2001GC000252.

- 572 Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B. 2001. Himalayan tectonics
- 573 explained by extrusion of a low-viscosity crustal channel coupled to focused surface
- 574 denudation. Nature, 414, 738-742.

575	
576	Beaumont, C. Jamieson, R.A., Nguyen, M.H., Medvedev, S. 2004. Crustal channel
577	flows: 1. Numerical models with applications to the tectonics of the Himalayan-
578	Tibetan orogen. Journal of Geophysical Research, 109, B06406,
579	doi:10.1029/2003JB002809.
580	
581	Cande, S.C., Kent, D.V. 1995. Revised calibration of the geomagnetic polarity
582	timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research,
583	100 (B4), 6093-6095.
584	
585	Cande, S.C., Stock, J.M. 2004 Pacific-Antarctic-Australia motion and the formation
586	of the Macquarie Plate. Geophysical Journal International, 157, 399-414.
587	
588	Cande, S.C., Patriat, P., Dyment, J., 2010. Motion between the Indian, Antarctica and
589	African plates in the early Cenozoic. Geophysical Journal International, doi:
590	10.1111/j.1365-246X.2010.04737.x
591	
592	Chu, D., Gordon, R.G. 1999. Evidence for motion between Nubia and Somalia along
593	the Southwest Indian ridge. Nature, 398, 64-67.
594	
595	Copley, A., Avouac, J.P., Royer, J.Y., 2010. The India-Asia collision and the
596	Cenozoic slowdown of the Indian plate; implications for the forces driving plate

597 motions. Journal of Geophysical Research, 115, B3, doi:10.1029/2009JB006634.

599	Corfield, R.I., Searle, M.P., Pedersen, R.B. 2001. Tectonic setting, origin, and
600	obduction history of the Spontang Ophiolite, Ladakh Himalaya, NW India. The
601	Journal of Geology, 109, 715-736.
602	
603	DeMets, C., Gordon, R.G., Vogt, P., 1994. Location of the Africa-Australia-India
604	triple junction and motion between the Australian and Indian plates: results from an
605	aeromagnetic investigation of the Central Indian and Carlsberg ridges. Geophysical
606	Journal International, 119, 893-930.
607	
608	DeMets, C., Gordon, R.G., Royer, J.Y., 2005. Motion between the Indian, Capricorn
609	and Somalian plates since 20 Ma: implications for the timing and magnitude of
610	distributed lithospheric deformation in the equatorial Indian ocean. Geophysical
611	Journal International, 161, 445-468.
612	
613	De Sigoyer, J., Chavagnac, V., Blichert-Toft, J., Villa, I.M., Luais, B., Guillot, S.,
614	Cosca, M., Mascle, G. 2000. Dating the Indian continental subduction and collisional
615	thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites.
616	Geology, 28, 487-490.
617	
618	Dewey, J.F., Bird, J.M., 1970. Mountain belts and the new global tectonics. Journal of
619	Geophysical Research, 75, 2625-2647.
620	
621	Dewey, J.F., Cande, S., Pitmann, W.C., 1989. Tectonic evolution of the India/Eurasia

- 622 Collision Zone. Eclogae Geologicae Helvetiae, 82, pp. 717-734.
- 623

624	Forster, M.A., Lister, G.S. 2005. Several distinct tectono-metamorphic slices in the
625	Cycladic eclogite-blueschist belt, Greece. Contributions to Mineralogy and Petrology,
626	150, 523-545.
627	
628	Gaina, C., Roest, W.R., Müller, R.D., 2002. Late Cretaceous-Cenozoic deformation in
629	northeast Asia, Earth and Planetary Science Letters, 197, 273-286.
630	
631	Gordon, R.G., DeMets, C., Royer, J.Y., 1998. Evidence for long-term diffuse
632	deformation of the lithosphere of the equatorial Indian Ocean. Nature, 395, 370-374.
633	
634	Gordon, R.G., DeMets, C., Argus, D.F., 1990. Kinematic constraints on distributed
635	lithospheric deformation in the equatorial Indian Ocean from present motion between
636	the Australian and Indian plates. Tectonics, 9, 409-422.
637	
638	Gradstein, F.M., Ogg, J.G., Smith, A.S. 2004. A Geological Timescale. Cambridge
639	University Press, Cambridge.
640	
641	Guillot, S. Garzanti, E., Baratoux, D., Marquer, D., Maheo, G., de Sigoyer, J. 2003.
642	Reconstructing the total shortening history of the NW Himalaya. Geochemistry,
643	Geophysics, Geosystems, 4, doi:10.1029/2002GC000484.
644	
645	Guillot, S. Maheo, G., de Sigoyer, J., Hattori, K.H., Pecher, A. Tethyan and Indian
646	subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic
647	rocks. Tectonophysics, 451, 225-241.
648	

649	Heirtzler, J.R., Dickson, G.O., Herron, E.M., Pitman, W.C., Le Pichon, X., 1968.
650	Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean
651	floor and continents. Journal of Geophysical Research, 73, 2119-2136.
652	
653	Henderson, A.L., Najman, Y., Parrish, R., Mark, D.F., Foster, G.L. in press.
654	Constraints to the timing of India-Eurasia collision; a re-evaluation of evidence from
655	the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India.
656	Earth Science Reviews. doi:10.1016/j.earscirev.2011.02.006
657	
658	Horner-Johnson, B.C., Gordon, R.G., Argus, D.F. 2007. Plate kinematic evidence for
659	the existence of a distinct plate between the Nubian and Somalian plates along the
660	Southwest Indian Ridge. Journal of Geophysical Research, 112, B05418, doi:
661	10.1029/2006JB004519.
001	
662	
662 663	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the
662663664	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow
662663664665	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182.
 662 663 664 665 666 	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182.
 662 663 664 665 666 667 	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182. Joffe, S., Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea – a re-
 662 663 664 665 666 667 668 	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182. Joffe, S., Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea – a re- evaluation. Tectonophysics, 141, 5-22.
 662 663 664 665 666 667 668 669 	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182. Joffe, S., Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea – a re- evaluation. Tectonophysics, 141, 5-22.
 662 663 664 665 666 667 668 669 670 	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182. Joffe, S., Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea – a re- evaluation. Tectonophysics, 141, 5-22. Jokat, W. Boebel, T., König, M., Meyer, U. 2003. Timing and geometry of early
 662 663 664 665 666 667 668 669 670 671 	Jamieson, R.A., Beaumont, C., Nguyen, M.H., Grujic, D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society London Special Publications, 268, 165-182. Joffe, S., Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea – a re- evaluation. Tectonophysics, 141, 5-22. Jokat, W. Boebel, T., König, M., Meyer, U. 2003. Timing and geometry of early Gondwana breakup. Journal of Geophysical Research, 108, B9, 2428, doi:

673

2	0
L	0

- Khan, S.D., Walker, D.J., Hall, S.A., Burke, K.C., Shah, M.T., Stockli, L. 2009 Did
- the Kohistan-Ladakh island are collide first with India? GSA Bulletin, 121, 366-384.
- 676
- 677 König, M., Jokat, W. 2006. The Mesozoic breakup of the Weddell Sea. Journal
- 678 Geophysical Research, 111, B12102, doi:10.1029/2005JB004035.
- 679
- 680 Leloup, P.H., Boutonnet, E., Davis, W.J., Hattori, K. 2011. Long-lasting
- 681 intracontinental strike-slip faulting: new evidence from the Karakorum shear zone in
- the Himalayas. Terra Nova, 23, 92-99.
- 683
- 684 Le Pichon, X., 1968. Sea-floor Spreading and Continental Drift. Journal of
- 685 Geophysical Research, 73, 3661-3697.
- 686
- 687 Le Pichon, X., Heirtzler, J.R., 1968. Magnetic anomalies in the Indian Ocean and Sea-
- 688 Floor Spreading. Journal of Geophysical Research, 73, 2101-2117.
- 689
- 690 Lee, T.Y., Lawver, L.A., 1995. Cenozoic plate reconstructions of Southeast Asia.
- 691 Tectonophysics, 251, 85-138.
- 692
- 693 Leech, M.L. 2008. Does the Karakorum fault interrupt mid-crustal channel flow in the
- 694 western Himalaya? EPSL, 276, 314-322.
- 695
- 696 Lemaux, J.L., Gordon, R.G., Royer, J.Y., 2002. Location of the Nubia-Somalia
- 697 boundary along the Southwest Indian ridge. Geology, 30, 339-342.
- 698

- 699 Lister, G.S., Forster, M.A., Rawling, T.J., 2001. Episodicity during orogenesis.
- 700 Geological Society London Special Publications, 184, 89-113.
- 701
- 702 Lister, G., Forster, M. 2009. Tectonic mode switches and the nature of orogenesis.
- 703 Lithos, 113, 274-291.
- 704
- 705 McKenzie, D., Sclater, J.G., 1971. The evolution of the Indian Ocean since the Late
- 706 Cretaceous. Geophysical Journal International, 24, 437-528.
- 707
- 708 McQuarrie, N., Stock, J.M., Verdel, C., Wernicke, B.P., 2003. Cenozoic evolution of
- 709 Neotethys and implications for the causes of plate motions. Geophysical Research
- 710 Letters, 30, NO. 20, 2036, doi:10.1029/2003GL017992.
- 711
- 712 Merkouriev, S., DeMets., C. 2006. Constraints on Indian plate motion since 20 Ma
- 713 from dense Russian magnetic data: Implications for Indian plate dynamics.
- 714 Geochemistry, Geophysics, Geosystems, 7, Q02002, doi:10.1029/2005GC001079.

715

- 716 Merkouriev, S., DeMets., C. 2008. A high-resolution model for Eurasia-North
- 717 America plate kinematics since 20 Ma. Geophysical Journal International, 173, 1064-718 1083.

719

- 720 Molnar, P., Tapponnier, P., 1975. Tectonics of Asia: Effects of a Continental
- 721 Collision. Science, 189, 419-426.

722

2	Δ
2	υ

- 723 Molnar, P., Stock, J.M., 2009. Slowing of India's convergence with Eurasia since 20
- Ma and its implications for Tibetan mantle dynamics, 28, TC3001,
- 725 doi:10.1029/2008TC002271.
- 726
- 727 Molnar, P., Pardo-Casas, F., Stock, J.M., 1988. The Cenozoic and Late Cretaceous
- evolution of the Indian Ocean Basin: uncertainties in the reconstructed positions of

the Indian, African and Antarctic plates. Basin Research, 1, 23–40.

730

- 731 Müller, R.D., Royer, J.Y., Cande, S.C., Roest, W.R., Maschenkov, S., 1999. New
- 732 Constraints on the Late Cretaceous/Tertiary plate tectonic evolution of the Caribbean.
- 733 In: Mann, P. (Ed.), Caribbean Basins. Sedimentary Basins of the World, 4, Elsevier
- 734 Science, Amsterdam, 33-59.
- 735
- 736 Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and
- 737 spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics,
- 738 Geosystems, 9, Q04006, doi:10.1029/2007GC001743.

739

- Noble, S.R., Searle, M.P., Walker, C.B. 2001. Age and tectonic significance of
- Permian granites in Western Zanskar, High Himalaya. The Journal of Geology, 109,127-135.

743

- Norton, I.O., Sclater, J.G., 1979. A model for the evolution of the Indian Ocean and
- the breakup of Gondwanaland. Journal of Geophysical Research, 84, 6803-6830.

747	Patriat, P. 1987. Reconstitution de l'évolution du systeme de dorsales de l'Ocean
748	Indien par les methodes de la Cinématique des Plaques. Terres Aust. Antarct. Fr.
749	(Mission Rech.), Paris, pp. 308.
750	
751	Patriat, P., Achache, J., 1984. India-Eurasia collision chronology has implications for
752	crustal shortening and driving mechanism of plates. Nature, 311, 615-621.
753	
754	Patriat, P., Segoufin. J., 1988. Reconstruction of the Central Indian Ocean.
755	Tectonophysics, 155, 211-234.
756	
757	Patriat, P., Sloan, H., Sauter, D. 2008. From slow to ultraslow: A previously
758	unrecognized event at the Southwest Indian Ridge at ca. 24 Ma. Geology, 36, 207-
759	210.
760	
761	Pedersen, R.B., Searle, M.P., Corfield, R.I. 2001. U-Pb zircon ages from the Spontang
762	Ophiolite, Ladakh Himalaya, Journal of the Geological Society, London, 158, 513-
763	520.
764	
765	Petterson, M.G., Windley, B.F. 1985. Rb-Sr dating of the Kohistan arc batholith in the
766	Trans-Himalaya of N. Pakistan and tectonic implications. Earth and Planetary Science
767	Letters, 74, 45-75.
768	
769	Robinson, A.C. 2009. Geologic offsets across the northern Karakorum fault:

- 770 Implications for its role and terrane correlations in the western Himalayan-Tibetan
- 771 orogen. Earth and Planetary Science Letters, 279, 123-130.

772	
773	Rolland, Y., Pêcher, A., Picard, C., 2000. Middle Cretaceous back-arc formation and
774	arc evolution along the Asian margin: the Shyok Suture Zone in northern Ladakh
775	(NW Himalaya). Tectonophysics, 325, 145-173.
776	
777	Rolland, Y., Picard, C., Pecher, A., Lapierre, H., Bosch, D., Keller, F. 2002. The
778	cretaceous Ladakh arc of NW himalaya-slab melting and melt-mantle interaction
779	during fast northward drift of Indian Plate. Chemical Geology, 182, 139-178.
780	
781	Rolland, Y., Mahéo, G., Pêcher, A., Villa, I.M. 2009. Syn-kinematic emplacement of
782	the Pangong metamorphic and magmatic complex along the Karakorum Fault (N
783	Ladakh). Journal of Asian Earth Sciences, 34, 10-25.
784	
785	Rosenbaum, G., Lister, G.S., Duboz, C., 2002. Relative motions of Africa, Iberia and
786	Europe during Alpine orogeny. Tectonophysics, 359, 117-129.
787	
788	Royer, J.Y., Chang, T., 1991. Evidence for Relative Motions Between the Indian and
789	Australian Plates During the Last 20 m.y. From Plate Tectonic Reconstructions:
790	Implications for the Deformation of the Indo-Australian Plate. Journal of Geophysical
791	Research, 96 (B7), 11779-11802.
792	
793	Royer, J.Y., Gordon, R.G., 1997, The motion and boundary between the Capricorn
794	and Australian plates. Science, 277, 1268-1274.
795	

			_		-						
796	Royer, J.Y.,	Gordon	, R.G.	, DeMets,	С.,	Vogt, P.I	R., 1997.	. New	limits	on the	motion

- between India and Australia since chron 5 (11 Ma) and implications for lithospheric
- deformation in the equatorial Indian Ocean. Geophysical Journal International, 129,
- 799 41-74.
- 800
- 801 Royer, J.R., Gordon, R.G., Horner-Johnson, B.C. 2006. Motion of Nubia relative to
- 802 Antarctica since 11 Ma: Implications for Nubia-Somalia, Pacific-North America, and
- 803 India-Eurasia motion. Geology, 34, 501-504.
- 804
- 805 Rowley, D.B. 1996. Age of initiation of collision between India and Asia: A review of

stratigraphic data. Earth and Planetary Science Letters, 145, 1-13.

807

808 Rubatto, D., Regis, D., Hermann, J., Boston, K., Engi, M., Beltrando, M., McAlpine,

809 S.R.B. 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western

- 810 Alps. Nature Geoscience, 4, 338-342.
- 811
- 812 Sclater, J.G., Fisher. R.L. 1974. Evolution of the east central Indian Ocean, with

813 emphasis on the tectonic setting of the Ninetyeast Ridge, Geolological Society of

- 814 America Bulletin, 85, 683-702.
- 815
- 816 Searle, M.P., Windley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A.J., Rex, D., Li,
- 817 T., Xiao, X., Jan, M.Q., Thakur, V.C., Kumar, S., 1987. The closing of Tethys and the
- tectonics of the Himalaya. Geological Society of America Bulletin, 98, 678-701.
- 819

- 820 Searle, M.P., Cooper, D.J.W., Rex. A.J. 1988. Collision tectonics of the Ladakh--
- 821 Zanskar Himalaya. Philosophical Transactions of the Royal Society of London. Series

- 823
- 824 Searle, M.P., Waters, D.J., Rex, D.C., Wilson, R.N. 1992. Pressure, temperature and
- 825 time constraints on Himalayan metamorphism from eastern Kashmir and western

826 Zanskar. Journal of the Geological Society, 149, 753-773.

- 827
- 828 Searle, M.P., Weinberg, R.F., Dunlap, W.J. 1998. Transpressional tectonics along the
- 829 Karakorum fault zone, northern Ladakh: constraints on Tibetan extrusion. Geological

830 Society, London, Special Publications, 135, 307-326.

831

832 Searle, M.P., Waters, D.J., Dransfield, M.W., Stephenson, B.J., Walker, C.B., Walker,

833 J.D., Rex, D.C. 1999. Thermal and mechanical models for the structural and

834 metamorphic evolution of the Zanskar High Himalaya. Geological Society London

835 Special Publications, 164, 139-156.

836

837 Thakur, V.C., Misra, D.K., 1984. Tectonic framework of the Indus and Shyok suture

zones in Eastern Ladakh, Northwest Himalaya, Tectonophysics, 101, 207-220.

- 839
- 840 Tikku, A.A., Cande, S.C. 1999. The oldest magnetic anomalies in the Australian-
- 841 Antarctica Basin: Are they isochrons? Journal of Geophysical Research, 104, 661-

842 677.

A, Mathematical and Physical Sciences, 326, 117-150.

844	Tikku, A.A., Cande, S.C. 2000. On the fit of Broken Ridge and Kerguelen plateau.
845	EPSL, 180, 117-132.
846	
847	Van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V., Gassmoller, R., in press.
848	Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles
849	of mantle plumes and continental collision. Journal of Geophysical Research.
850	
851	Vance, D., Harris, N. 1999. Timing of prograde metamorphism in the Zanskar
852	Himalaya. Geology, 27, 395-398.
853	
854	Walker, C.B., Searle, M.P., Waters, D.J. 2001. An integrated tectonothermal model
855	for the evolution of the High Himalaya in western Zanskar with constraints from
856	thermobarometry and metamorphic modeling. Tectonics, 20, 810-833.
857	
858	Wang, C.S., Li, X.H., Hu, X.M., Jansa, L.F. 2002. Latest marine horizon north of
859	Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision
860	tectonics. Terra Nova, 14, 114-120.
861	
862	Weinberg, R.F., Dunlap, W.J. 2000. Growth and Deformation of the Ladakh
863	Batholith, Northwest Himalayas: Implications for Timing of Continental Collision
864	and Origin of Calc-Alkaline Batholiths. The Journal of Geology, 108, 303-320.
865	
866	Weinberg, R.F., Dunlap, W.J., Whitehouse, M. 2000. New field, structural and
867	geochronological data from the Shyok and Nubra valleys, northern Ladakh: linking
868	Kohistan to Tibet. Geological Society, London, Special Publications, 170, 253-275.

2	6
2	υ

869	
870	Wiens, D.A., DeMets, C., Gordon, R.G., Stein, S., Argus, D., Engeln, J.F., Lundgren,
871	P., Quible, D., Stein, C., Weinstein, S., Woods, D.F., 1985. A diffuse plate boundary
872	model for Indian Ocean tectonics. Geophysical Research Letters, 12, 429-432.
873	
874	Wiens, D.A., Stein, S., DeMets, C., Gordon, R.G., Stein, C., 1986. Plate tectonic
875	models for Indian Ocean "intraplate" deformation. Tectonophysics, 132, 37-48.
876	
877	Wilke, F.D.H., O'Brien, P.J., Gerdes, A., Timmerman, M.J., Sudo, M., Khan, M.A.
878	2010. The multistage exhumation history of the Kaghan Valley UHP series, NW
879	Himalaya, Pakistan from U-Pb and ⁴⁰ Ar/ ³⁹ Ar ages. European Journal of Mineralogy,
880	22, 703-719.
881	
882	Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen.
883	Annual Review of Earth and Planetary Sciences, 28, 211-280.
884	
885	Yue, Y., Ritts, B.D., Graham, S.A., 2001. Initiation and Long-Term Slip History of
886	the Altyn Tagh Fault. International Geology Review, 43, 1087-1093.
887	
888	
889	
890	
891	
892	
893	

37

894 FIGURE CAPTIONS

Figure 1. Topographic and bathymetric map of Indian ocean showing the location of
the boundaries of the African, Arabian, Antarctic, Australian, Indian and Eurasian
tectonic plates. The image was derived from NOAA's ETOPO1 global relief model
[Amante and Eakins 2009]. The location of plate boundaries was modified from Bird
[2003].

900

901 Figure 2. Velocity (mm/yr) vs. time (Ma) plot of the Indian plate relative to the

902 Eurasian plate according to; (a) Patriat and Achache [1984]; (b) Dewey et al. [1989],

and; (c) Molnar and Stock [2009]. The timescales used in these plots are the same as

was originally quoted in each reference, including a misquoted age of anomaly 22, in

- 905 Dewey et al. [1989]. The velocity of the tracking point was recorded at 1 Ma intervals906 with Pplates (v2.0).
- 907

908 Figure 3. Velocity (mm/yr) vs. time (Ma) plot of the Indian plate relative to the

909 African plate according to: (a) Patriat and Segoufin [1988] and (b) Molnar et al.,

910 [1988]. The timescales used in these plots are the same as was originally quoted in

911 each paper. The velocity of the tracking point was recorded at 1 Ma intervals with

912 Pplates (v2.0).

913

Figure 4. Velocity (mm/yr) vs. time (Ma) plot of the Indian plate relative to the
Eurasian plate according to Copley et al. [2001]. These workers used a 2.5 Ma time
interval between 30 - 0 Ma and a 5 Ma time interval between 75 - 30 Ma and
produced a reasonably smooth curve of India's deceleration at ~50 Ma. However,
using the same Euler poles for India relative to Eurasia with 1 Ma increments shows

38

919	the effect of under sampling/smoothing the data. The widely accepted deceleration of
920	India at \sim 50 Ma may be associated with unintentional smoothing of results by
921	interpolating tracking points with too broad a time interval. The timescale used in this
922	plot is the same as was originally quoted in Copley et al. [2001].
923	
924	Figure 5. Comparison of the motion of the African plate relative to the North
925	American plate according to: (a) Müller et al. [1999]; (b) Rosenbaum et al. [2002],
926	and; (c) McQuarrie et al. [2003], as well as a comparison of the velocity of the North
927	America plate relative to the Eurasian plate according to: (d) Gaina et al. [2002]; (e)
928	Rosenbaum et al. [2002], and; (f) McQuarrie et al. [2003]. The timescale used in these
929	plots is the same as was originally used in each respective paper. The velocity of the
930	tracking point was recorded at 1 Ma intervals with Pplates (v2.0).
931	
932	Figure 6. A fictional example of a Didactic Tree showing two models (1 and 2). This
933	suggests that the worker who proposed Model 1 assumed that all plates are rigid,
934	whilst the worker who proposed Model 2 assumed that all plates are deformable.
935	Examining the Didactic Tree further we can identify that the timescale adopted in
936	Model 1 was updated in 1972, whilst the timescale that was adopted in Model 2 was
937	updated in 2004. This tree also informs the reader that both Model 1 and 2 are based
938	on the same plate circuit. However, Model 1 is clearly based on much more magnetic

- seafloor anomaly data than Model 2. A future reconstruction may therefore use the
- 940 detailed magnetic seafloor anomaly data of Model 1 in a deformable plate
- 941 reconstruction, but update the ages of each anomaly according the most recent

timescale that was adopted in Model 2.

39

944	Figure 7.	The Didactic	Tree according	to the data,	decisions and	assumptions that
	0		U			1

945 were used our reconstruction of the motion history of the Indian plate relative to the

946 Eurasian plate. Information about which Euler poles were used for a given time can

- 947 be obtained from Auxiliary Dataset (A2).
- 948
- 949 Figure 8. Velocity vs. time plot of the Indian plate relative to Eurasia according to our
- 950 reconstruction [Auxiliary Dataset (A2)]. This plot shows that the velocity of the
- 951 Indian plate was episodic and that there was more than one period of acceleration and
- 952 deceleration. The plot was generated by rotating a point at 0 Ma (28°N / 83°E)
- according to the Euler poles adopted in this study. The position and velocity of the
- point were calculated at 0.001 Ma intervals with Pplates (v2.0).

Figure 2(greyscale)

Page 44 of 50

