4 research outputs found

    Cellular Mechanisms Underlying B Cell Abnormalities in Patients With Gain-of-Function Mutations in the PIK3CD Gene

    No full text
    BackgroundActivated phosphoinositide 3 kinase (PI3K) -delta syndrome (APDS) is an inborn error of immunity with variable clinical phenotype of immunodeficiency and immune dysregulation and caused by gain-of-function mutations in PIK3CD. The hallmark of immune phenotype is increased proportions of transitional B cells and plasmablasts (PB), progressive B cell loss, and elevated levels of serum IgM.ObjectiveTo explore unique B cell subsets and the pathomechanisms driving B cell dysregulation beyond the transitional B cell stage in APDS.MethodsClinical and immunological data was collected from 24 patients with APDS. In five cases, we performed an in-depth analysis of B cell phenotypes and cultured purified naïve B cells to evaluate their survival, activation, Ig gene class switch recombination (CSR), PB differentiation and antibody secretion. We also analyzed PB differentiation capacity of sorted CD27-IgD- double-negative B (DNB) cells.ResultsThe patients had increased B cell sizes and higher proportions of IgM+ DNB cells than healthy controls (HC). Their naïve B cells exhibited increased death, impaired CSR but relatively normal PB differentiation. Upon stimulation, patient's DNB cells secreted a similar level of IgG but a higher level of IgM than DNB cells from HC. Targeted therapy of PI3K inhibition partially restored B cell phenotypes.ConclusionsThe present study suggests additional mechanistic insight into B cell pathology of APDS: (1) decreased peripheral B cell numbers may be due to the increased death of naïve B cells; (2) larger B cell sizes and expanded DNB population suggest enhanced activation and differentiation of naïve B cells into DNB cells; (3) the impaired CSR yet normal PB differentiation can predominantly generate IgM-secreting cells, resulting in elevated IgM levels

    Table_1_Case Report: Initial Treatment Adjustments and Complications in Ovarian Cancer Patient With Inborn Error of Immunity.pdf

    No full text
    BackgroundPatients with inborn errors of immunity (IEI) have increased risk of developing cancers secondary to impaired anti-tumor immunity. Treatment of patients with IEI and cancer is challenging as chemotherapy can exacerbate infectious susceptibility. However, the literature on optimal cancer treatment in the setting of IEI is sparse.ObjectivesWe present a patient with specific antibody deficiency with normal immunoglobins (SADNI), immune dysregulation (ID), and stage III ovarian carcinoma as an example of the need to modify conventional treatment in the context of malignancy, IEI, and ongoing infections.MethodsThis is a retrospective chart review of the patient’s clinical manifestations, laboratory evaluation and treatment course.ResultsOur patient is a female with SADNI and ID diagnosed with stage III ovarian carcinoma at 60 years of age. Her ID accounted for antinuclear antibody positive (ANA+) mixed connective tissue diseases, polyarthralgia, autoimmune neutropenia, asthma, autoimmune thyroiditis, and Celiac disease. Due to the lack of precedent in the literature, her treatment was modified with continuous input from infectious disease, allergy/immunology and oncology specialist using a multidisciplinary approach.The patient completed debulking surgery and 6 cycles of chemotherapy. The dosing for immunoglobulin replacement therapy was increased for prophylaxis. Chemotherapy doses were lowered for all cycles preemptively for IEI. The therapy included carboplatin, paclitaxel, bevacizumab, and pegfilgrastim. The patient completed six-months of maintenance medication involving bevacizumab.Her treatment course was complicated by Mycobacterium avium-complex (MAC) infection, elevated bilirubin and liver enzymes attributed to excessive immunoglobulin replacement therapy, and urinary tract infection (UTI) and incontinence.Cancer genetic analysis revealed no targetable markers and primary immunodeficiency gene panel of 407 genes by Invitae was unrevealing. Lab tests revealed no evidence of Epstein-Barr Virus (EBV) infection. Post-chemotherapy imaging revealed no evidence of cancer for 1 year and 4 months, but the disease relapsed subsequently. The patient’s lung scarring requires vigilance.ConclusionsOur patient with ovarian cancer and IEI required modified treatment and prevention of complications. In cases of IEI, optimal chemotherapy should be titrated to minimize immunosuppression yet treat cancer aggressively while decreasing the risk of infection with prophylactic antibiotics and prolonged post-treatment surveillance, including pulmonary evaluation.</p

    Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet+ B cells

    No full text
    The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an ‘experiment of nature’ to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent ‘domino effect’ that impacts stringency of tolerance and B cell fate in the periphery

    Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet+ B cells.

    No full text
    The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an 'experiment of nature' to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent 'domino effect' that impacts stringency of tolerance and B cell fate in the periphery
    corecore