295 research outputs found
Developmental Regulation of Sialoadhesin (Sheep Erythrocyte Receptor), a Macrophage-Cell Interaction Molecule Expressed in Lymphohemopoietic Tissues
Stromal macrophages in lymphohemopoietic tissues express novel macrophagerestricted
plasma membrane receptors involved in nonphagocytic interactions with
other hemopoietic cells. One such receptor with lectinlike specificity for sialylated
glycoconjugates on sheep erythrocytes and murine hemopoietic cells has been
characterized immunochemically and termed sialoadhesin. We have examined
sialoadhesin expression during mouse development to learn more about its regulation
and function. Immunocytochemical, rosetting, and Western blot studies show that
sialoadhesin is first detected on fetal liver macrophages on day 18 of development, 7
days after numerous F4/80+ macrophages are found within erythroblastic islands. In
spleen and bone marrow, sialoadhesin appears between day 18 and birth, in parallel
with myeloid development. Strongly labeled macrophages in the marginal zone of
spleen, characteristic of adult lymphoid tissues, appeared gradually between 1–4
Isolation of fetal liver macrophages at day 14 confirmed that sialoadhesin was not
involved in the binding of erythroblasts, which is mediated by a distinct cationdependent
receptor (Morris et al., 1988, p. 649). Sialoadhesin could be expressed by
isolated fetal liver macrophages after cultivation in adult mouse serum, a known source
of inducer activity, but was not dependent on the presence of this inducer, unlike adultderived
madrophages. Fetal plasma contained inducing activity on day 13, but adult
levels were not reached until 2 weeks postnatally. These studies show that sialoadhesin
is differentially regulated compared with the erythroblast receptor and F4/80 antigen,
that it is not required for fetal erythropoiesis, and that its induction on stromal
macrophages is delayed until the onset of myeloid and lymphoid development.
Sialoadhesin provides a marker to study maturation and functions of macrophages
during ontogeny of the lymphohemopoietic system
The Macrophage Scavenger Receptor A Is Host-Protective in Experimental Meningococcal Septicaemia
Macrophage Scavenger Receptor A (SR-A) is a major non-opsonic receptor for Neisseria meningitidis on mononuclear phagocytes in vitro, and the surface proteins NMB0278, NMB0667, and NMB1220 have been identified as ligands for SR-A. In this study we ascertain the in vivo role of SR-A in the recognition of N. meningitidis MC58 (serogroup B) in a murine model of meningococcal septicaemia. We infected wild-type and SR-A−/− animals intraperitoneally with N. meningitidis MC58 and monitored their health over a period of 50 hours. We also determined the levels of bacteraemia in the blood and spleen, and measured levels of the pro-inflammatory cytokine interleukin-6 (IL-6). The health of SR-A−/− animals deteriorated more rapidly, and they showed a 33% reduction in survival compared to wild-type animals. SR-A−/− animals consistently exhibited higher levels of bacteraemia and increased levels of IL-6, compared to wild-type animals. Subsequently, we constructed a bacterial mutant (MC58-278-1220) lacking two of the SR-A ligands, NMB0278 and NMB1220. Mutation of NMB0667 proved to be lethal. When mice were infected with the mutant bacteria MC58-278-1220, no significant differences could be observed in the health, survival, bacteraemia, and cytokine production between wild-type and SR-A−/− animals. Overall, mutant bacteria appeared to cause less severe symptoms of septicaemia, and a competitive index assay showed that higher levels of wild-type bacteria were recovered when animals were infected with a 1∶1 ratio of wild-type MC58 and mutant MC58-278-1220 bacteria. These data represent the first report of the protective role of SR-A, a macrophage-restricted, non-opsonic receptor, in meningococcal septicaemia in vivo, and the importance of the recognition of bacterial protein ligands, rather than lipopolysaccharide
Identification and Characterization of a Novel Human Myeloid Inhibitory C-type Lectin-like Receptor (MICL) That Is Predominantly Expressed on Granulocytes and Monocytes
Inhibitory and activatory C-type lectin-like receptors play an important role in immunity through the regulation of leukocytes. Here, we report the identification and characterization of a novel myeloid inhibitory C-type lectin-like receptor (MICL) whose expression is primarily restricted to granulocytes and monocytes. This receptor, which contains a single C-type lectin-like domain and a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, is related to LOX-1 (lectin-like receptor for oxidized low density lipoprotein-1) and the β-glucan receptor (Dectin-1) and is variably spliced and highly N-glycosylated. We demonstrate that it preferentially associates with the signaling phosphatases SHP-1 and SHP-2, but not with SHIP. Novel chimeric analyses with a construct combining MICL and the β-glucan receptor show that MICL can inhibit cellular activation through its cytoplasmic immunoreceptor tyrosine-based inhibitory motff. These data suggest that MICL is a negative regulator of granulocyte and monocyte function
Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages
Vomocytosis, also known as nonlytic exocytosis, is a process whereby fully phagocytosed microbes are expelled from phagocytes without discernible damage to either the phagocyte or microbe. Although this phenomenon was first described in the opportunistic fungal pathogen Cryptococcus neoformans in 2006, to date, mechanistic studies have been hampered by an inability to reliably stimulate or inhibit vomocytosis. Here we present the fortuitous discovery that macrophages lacking the scavenger receptor MAcrophage Receptor with COllagenous domain (MARCO), exhibit near-total vomocytosis of internalised cryptococci within a few hours of infection. Our findings suggest that MARCO’s role in modulating vomocytosis is independent of its role as a phagocytic receptor and instead may be driven by variation in cytoskeletal arrangement between wildtype and MARCO-deficient macrophages
Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages
Vomocytosis, also known as nonlytic exocytosis, is a process whereby fully phagocytosed microbes are expelled from phagocytes without discernible damage to either the phagocyte or microbe. Although this phenomenon was first described in the opportunistic fungal pathogen Cryptococcus neoformans in 2006, to date, mechanistic studies have been hampered by an inability to reliably stimulate or inhibit vomocytosis. Here we present the fortuitous discovery that macrophages lacking the scavenger receptor MAcrophage Receptor with COllagenous domain (MARCO), exhibit near‐total vomocytosis of internalised cryptococci within a few hours of infection. Marco−/− macrophages also showed elevated vomocytosis of a yeast‐locked C. albicans strain, suggesting this to be a broadly relevant observation. We go on to show that MARCO's role in modulating vomocytosis is independent of its role as a phagocytic receptor, suggesting that this protein may play an important and hitherto unrecognised role in modulating macrophage behaviour
Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion
The Beta-Glucan Receptor Dectin-1 Recognizes Specific Morphologies of Aspergillus Fumigatus
Alveolar macrophages represent a first-line innate host defense mechanism for clearing inhaled Aspergillus fumigatus from the lungs, yet contradictory data exist as to which alveolar macrophage recognition receptor is critical for innate immunity to A. fumigatus. Acknowledging that the A. fumigatus cell wall contains a high beta-1,3-glucan content, we questioned whether the beta-glucan receptor dectin-1 played a role in this recognition process. Monoclonal antibody, soluble receptor, and competitive carbohydrate blockage indicated that the alveolar macrophage inflammatory response, specifically the production of tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6, CXCL2/macrophage inflammatory protein-2 (MIP-2), CCL3/macrophage inflammatory protein-1α (MIP-1α), granulocyte-colony stimulating factor (G-CSF), and granulocyte monocyte-CSF (GM-CSF), to live A. fumigatus was dependent on recognition via the beta-glucan receptor dectin-1. The inflammatory response was triggered at the highest level by A. fumigatus swollen conidia and early germlings and correlated to the levels of surface-exposed beta glucans, indicating that dectin-1 preferentially recognizes specific morphological forms of A. fumigatus. Intratracheal administration of A. fumigatus conidia to mice in the presence of a soluble dectin-Fc fusion protein reduced both lung proinflammatory cytokine/chemokine levels and cellular recruitment while modestly increasing the A. fumigatus fungal burden, illustrating the importance of beta-glucan-initiated dectin-1 signaling in defense against this pathogen. Collectively, these data show that dectin-1 is centrally required for the generation of alveolar macrophage proinflammatory responses to A. fumigatus and to our knowledge provides the first in vivo evidence for the role of dectin-1 in fungal innate defense
The Beta-Glucan Receptor Dectin-1 Recognizes Specific Morphologies of Aspergillus fumigatus
Alveolar macrophages represent a first-line innate host defense mechanism for clearing inhaled Aspergillus fumigatus from the lungs, yet contradictory data exist as to which alveolar macrophage recognition receptor is critical for innate immunity to A. fumigatus. Acknowledging that the A. fumigatus cell wall contains a high beta-1,3–glucan content, we questioned whether the beta-glucan receptor dectin-1 played a role in this recognition process. Monoclonal antibody, soluble receptor, and competitive carbohydrate blockage indicated that the alveolar macrophage inflammatory response, specifically the production of tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6, CXCL2/macrophage inflammatory protein-2 (MIP-2), CCL3/macrophage inflammatory protein-1α (MIP-1α), granulocyte-colony stimulating factor (G-CSF), and granulocyte monocyte–CSF (GM-CSF), to live A. fumigatus was dependent on recognition via the beta-glucan receptor dectin-1. The inflammatory response was triggered at the highest level by A. fumigatus swollen conidia and early germlings and correlated to the levels of surface-exposed beta glucans, indicating that dectin-1 preferentially recognizes specific morphological forms of A. fumigatus. Intratracheal administration of A. fumigatus conidia to mice in the presence of a soluble dectin-Fc fusion protein reduced both lung proinflammatory cytokine/chemokine levels and cellular recruitment while modestly increasing the A. fumigatus fungal burden, illustrating the importance of beta-glucan–initiated dectin-1 signaling in defense against this pathogen. Collectively, these data show that dectin-1 is centrally required for the generation of alveolar macrophage proinflammatory responses to A. fumigatus and to our knowledge provides the first in vivo evidence for the role of dectin-1 in fungal innate defense
- …