1,773 research outputs found

    Control rod monitoring of advanced gas-cooled reactors

    Get PDF
    The UK’s fleet of Advanced Gas Cooled Reactors (AGR) are approaching, and have in some cases exceeded, their original design lives. Continued operation is under enhanced safety cases based on monitoring, inspection and component condition assessment of the core and related systems. This paper presents an analysis of the regulating control rods of an AGR, which are used to manage the power and reactivity of the core. Current manual analyses attempt to detect possible restrictions in the motion of the rods due to degradation of the graphite core, however the development of an automated intelligent analysis of the control rod data provides a repeatable and auditable method of analyzing the data. It is shown, by means of an example data set, that despite some limitations in the scope of the recorded data, it is possible to estimate the performance of the rods and present this information to the engineer in a way that more easily indicates abnormal behavior than existing analyses. It is also noted that though this work was initially conceived as a method of detecting restrictions in the motion of the regulating control rods, the results are potentially more useful is characterizing control rod performance and has potential application in predictive maintenance

    Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage

    Get PDF
    BACKGROUND: Anti-Aβ immunotherapy in transgenic mice reduces both diffuse and compact amyloid deposits, improves memory function and clears early-stage phospho-tau aggregates. As most Alzheimer disease cases occur well past midlife, the current study examined adoptive transfer of anti-Aβ antibodies to 19- and 23-month old APP-transgenic mice. METHODS: We investigated the effects of weekly anti-Aβ antibody treatment on radial-arm water-maze performance, parenchymal and vascular amyloid loads, and the presence of microhemorrhage in the brain. 19-month-old mice were treated for 1, 2 or 3 months while 23-month-old mice were treated for 5 months. Only the 23-month-old mice were subject to radial-arm water-maze testing. RESULTS: After 3 months of weekly injections, this passive immunization protocol completely reversed learning and memory deficits in these mice, a benefit that was undiminished after 5 months of treatment. Dramatic reductions of diffuse Aβ immunostaining and parenchymal Congophilic amyloid deposits were observed after five months, indicating that even well-established amyloid deposits are susceptible to immunotherapy. However, cerebral amyloid angiopathy increased substantially with immunotherapy, and some deposits were associated with microhemorrhage. Reanalysis of results collected from an earlier time-course study demonstrated that these increases in vascular deposits were dependent on the duration of immunotherapy. CONCLUSIONS: The cognitive benefits of passive immunotherapy persist in spite of the presence of vascular amyloid and small hemorrhages. These data suggest that clinical trials evaluating such treatments will require precautions to minimize potential adverse events associated with microhemorrhage

    Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice

    Get PDF
    BACKGROUND: The pathology of Alzheimer's disease (AD) is comprised of extracellular amyloid plaques, intracellular tau tangles, dystrophic neurites and neurodegeneration. The mechanisms by which these various pathological features arise are under intense investigation. Here, expanding upon pilot gene expression studies, we have further analyzed the relationship between Na+/K+ ATPase and amyloid using APP+PS1 transgenic mice, a model that develops amyloid plaques and memory deficits in the absence of tangle formation and neuronal or synaptic loss. RESULTS: We report that in addition to decreased mRNA expression, there was decreased overall Na+/K+ ATPase enzyme activity in the amyloid-containing hippocampi of the APP+PS1 mice (although not in the amyloid-free cerebellum). In addition, dual immunolabeling revealed an absence of Na+/K+ ATPase staining in a zone surrounding congophilic plaques that was occupied by dystrophic neurites. We also demonstrate that cerebral Na+/K+ ATPase activity can be directly inhibited by high concentrations of soluble Aβ. CONCLUSIONS: The data suggest that the reductions in Na+/K+ ATPase activity in Alzheimer tissue may not be purely secondary to neuronal loss, but may results from direct effects of amyloid on this enzyme. This disruption of ion homeostasis and osmotic balance may interfere with normal electrotonic properties of dendrites, blocking intraneuronal signal processing, and contribute to neuritic dystrophia. These results suggest that therapies aimed at enhancing Na+/K+ ATPase activity in AD may improve symptoms and/or delay disease progression

    The Maine Annex, vol. 2, no. 12

    Get PDF
    The Maine Annex announced the scheduled presentation by Margaret Chase Smith and reports the Brunswick campus would become co-educational

    Anytime search in dynamic graphs

    Get PDF
    Agents operating in the real world often have limited time available for planning their next actions. Producing optimal plans is infeasible in these scenarios. Instead, agents must be satisfied with the best plans they can generate within the time available. One class of planners well-suited to this task are anytime planners, which quickly find an initial, highly suboptimal plan, and then improve this plan until time runs out. A second challenge associated with planning in the real world is that models are usually imperfect and environments are often dynamic. Thus, agents need to update their models and consequently plans over time. Incremental planners, which make use of the results of previous planning efforts to generate a new plan, can substantially speed up each planning episode in such cases. In this paper, we present an A^*-based anytime search algorithm that produces significantly better solutions than current approaches, while also providing suboptimality bounds on the quality of the solution at any point in time. We also present an extension of this algorithm that is both anytime and incremental. This extension improves its current solution while deliberation time allows and is able to incrementally repair its solution when changes to the world model occur. We provide a number of theoretical and experimental results and demonstrate the effectiveness of the approaches in a robot navigation domain involving two physical systems. We believe that the simplicity, theoretical properties, and generality of the presented methods make them well suited to a range of search problems involving dynamic graphs

    Improvement of a low pH antigen-antibody dissociation procedure for ELISA measurement of circulating anti-Aβ antibodies

    Get PDF
    BACKGROUND: Prior work from our group found that acid dissociation (pH 2.5 incubation) of serum from APP transgenic mice vaccinated against Aβ increased the apparent anti-Aβ titers, suggesting antibody masking by antigen in the ELISA assay. Subsequently, we found that pH 2.5 incubation of serum from unvaccinated non-transgenic mice showed antibody binding to Aβ1–42, but no increase when other proteins, including shorter Aβ peptides, coated the ELISA plate. To investigate further the effects of low pH incubation on apparent anti-Aβ1–42 signals, we examined normal sera from nonTg unvaccinated mice, nonTg mice vaccinated with Aβ peptide (to produce authentic anti-Aβ antibodies) or a monoclonal antibody against Aβ (6E10) using competitive-inhibition ELISA and Aβ epitope mapping assays. In addition, we examined use of a less stringent low pH procedure at pH 3.5, to ascertain if it had the same effects as the pH 2.5 procedure. RESULTS: We believe there are three distinct effects of pH 2.5 incubation.; A) an artifactual increase in binding to full length Aβ by mouse immunoglobulin which has low affinity for Aβ, B) an inactivation of anti-Aβ antibodies that is time dependent and C) unmasking of high affinity anti-Aβ antibodies when high levels of circulating Aβ is present in APP transgenic mice. All three reactions can interact to produce the final ELISA signal. Incubation of sera from unvaccinated nonTg mice at pH 2.5 enhanced ELISA signals by process A. Conversely, pH 2.5 incubation of sera from vaccinated nonTg mice with caused a time dependent reduction of antibody signal by process B (overcoming the increase caused by A). The artifactual anti-Aβ ELISA signal enhanced by pH 2.5 incubation of normal mouse sera could not be effectively competed by low to moderate concentrations of Aβ, nor bind to shorter Aβ peptides in a manner similar to authentic anti-Aβ antibodies. Incubation of mouse sera at pH 3.5 caused neither an apparent increase in anti-Aβ ELISA signal, nor an inactivation of the ELISA signals resulting from either vaccination or monoclonal antibodies. However, incubation at pH 3.5 was able to completely reverse the reduction in ELISA signal caused by Aβ complexing with antibodies in sera from vaccinated mice or monoclonal anti-Aβ antibodies. CONCLUSION: Incubation at pH 3.5 is sufficient to dissociate Aβ bound to anti-Aβ antibodies without producing artifactual increases in the signal, or inactivating authentic antibody binding. Thus, use of pH 3.5 is a considerable improvement over pH 2.5 incubation for unmasking anti-Aβ antibodies in ELISA assays to measure antibodies in APP transgenic mouse sera
    corecore