732 research outputs found
Analysis on the hull girder ultimate strength of a bulk carrier using simplified method based on an incremental-iterative approach
The hull girder ultimate strength of a typical bulk carrier is analyzed using a simplified method based on an incremental-iterative approach. First, vertical bending moment is examined by seven different methods. The moment versus curvature curves and the values of the ultimate longitudinal moments at collapse states are determined for both hogging and sagging cases. Second, the ultimate strength under coupled vertical and horizontal bending moment is accounted. An interaction curve is obtained, which corresponds to the results of series of calculation for the ship hull subject to bending conditions with different angles of curvature. It is found that the interaction curve is asymmetrical because the hull cross section is not symmetrical with respect to the horizontal axis and the structural response of the elements under compression is different from that under tension due to nonlinearity caused by buckling. The angles of the resultant bending moment vector and that of the curvature vector are different in investigated cases. The interaction design equations proposed by other researches are also addressed to discuss the results presented by this study
Evolution of clonal populations approaching a fitness peak
Populations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.CAPES-IGC
Do parental reflective functioning and parental competence affect the socioemotional adjustment of children?
Parental reflective functioning refers to the parents’ ability to reflect on their children’s mental states, and is increasingly considered to be a key feature of competent parenting. However, to date, no study has empirically investigated this assumption. The main objective of the present study was therefore to investigate the mediating role of parental competence in the relationship between parental reflective functioning and children’s socioemotional adjustment. We also investigated whether these relationships were similar for mothers and fathers. The study was carried out in a sample of 433 mothers and 113 fathers of infants aged from 2 to 36 months. Participants had to complete the Spanish version of the Perceived Parental Competence Scale, the Parental Reflective Functioning Questionnaire and the Ages & Stages Questionnaire. Results showed, as expected, that parental competence mediated the association between parental reflective functioning and infants’ emotional adjustment. Multigroup analysis supported the invariance of the structural model across mothers and fathers. The implications of these results for pediatric and primary care are discussed
An ABC Method for Estimating the Rate and Distribution of Effects of Beneficial Mutations
Determining the distribution of adaptive mutations available to natural selection is a difficult task. These are rare events and most of them are lost by chance. Some theoretical works propose that the distribution of newly arising beneficial mutations should be close to exponential. Empirical data are scarce and do not always support an exponential distribution. Analysis of the dynamics of adaptation in asexual populations of microorganisms has revealed that these can be summarized by two effective parameters, the effective mutation rate, Ue, and the effective selection coefficient of a beneficial mutation, Se. Here, we show that these effective parameters will not always reflect the rate and mean effect of beneficial mutations, especially when the distribution of arising mutations has high variance, and the mutation rate is high. We propose a method to estimate the distribution of arising beneficial mutations, which is motivated by a common experimental setup. The method, which we call One Biallelic Marker Approximate Bayesian Computation, makes use of experimental data consisting of periodic measures of neutral marker frequencies and mean population fitness. Using simulations, we find that this method allows the discrimination of the shape of the distribution of arising mutations and that it provides reasonable estimates of their rates and mean effects in ranges of the parameter space that may be of biological relevance.Fundação Calouste Gulbenkian, FCT, LAO/ITQB, Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq), Fundação de Amparo Ă CiĂŞncia e Tecnologia do Estado de Pernambuco (FACEPE), program PRONEX/MCT-CNPq-FACEPE
Testing machine learning algorithms for the prediction of depositional fluxes of the radionuclides 7Be, 210Pb and 40K
The monthly depositional fluxes of 7Be, 210Pb and 40K were measured at Malaga, (Southern Spain) from 2005 to 2018. In this work, the depositional fluxes of these radionuclides are investigated and their relations with several atmospheric variables have been studied by applying two popular machine learning methods: Random Forest and Neural Network algorithms. We extensively test different configurations of these algorithms and demonstrate their predictive ability for reproducing depositional fluxes. The models derived with Neural Networks achieve slightly better results, in average, although similar, having into account the uncertainties. The mean Pearson-R coefficients, evaluated with a k-fold cross-validation method, are around 0.85 for the three radionuclides using Neural Network models, while they go down to 0.83, 0.79 and 0.8 for 7Be, 210Pb and 40K, respectively, for the Random Forest models. Additionally, applying the Recursive Feature Elimination technique we determine the variables more correlated with the depositional fluxes of these radionuclides, which elucidates the main dependences of their temporal variability.This research was funded by Consejo de Seguridad Nuclear (Spain).
Funding for open access charge: Universidad de Málaga / CBU
Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population
Background: The migratory patterns of animals are changing in response to global environmental change with many species forming resident populations in areas where they were once migratory. The white stork (Ciconia ciconia) was wholly migratory in Europe but recently guaranteed, year-round food from landfill sites has facilitated the establishment of resident populations in Iberia. In this study 17 resident white storks were fitted with GPS/GSM data loggers (including accelerometer) and tracked for 9.1 ± 3.7 months to quantify the extent and consistency of landfill attendance by individuals during the non-breeding and breeding seasons and to assess the influence of landfill use on daily distances travelled, percentage of GPS fixes spent foraging and non-landfill foraging ranges. Results: Resident white storks used landfill more during non-breeding (20.1 % ± 2.3 of foraging GPS fixes) than during breeding (14.9 % ± 2.2). Landfill attendance declined with increasing distance between nest and landfill in both seasons. During non-breeding a large percentage of GPS fixes occurred on the nest throughout the day (27 % ± 3.0 of fixes) in the majority of tagged storks. This study provides first confirmation of year-round nest use by resident white storks. The percentage of GPS fixes on the nest was not influenced by the distance between nest and the landfill site. Storks travelled up to 48.2 km to visit landfills during non-breeding and a maximum of 28.1 km during breeding, notably further than previous estimates. Storks nesting close to landfill sites used landfill more and had smaller foraging ranges in non-landfill habitat indicating higher reliance on landfill. The majority of non-landfill foraging occurred around the nest and long distance trips were made specifically to visit landfill. Conclusions: The continuous availability of food resources on landfill has facilitated year-round nest use in white storks and is influencing their home ranges and movement behaviour. White storks rely on landfill sites for foraging especially during the non-breeding season when other food resources are scarcer and this artificial food supplementation probably facilitated the establishment of resident populations. The closure of landfills, as required by EU Landfill Directives, will likely cause dramatic impacts on white stork populations
Deep Shape Matching
We cast shape matching as metric learning with convolutional networks. We
break the end-to-end process of image representation into two parts. Firstly,
well established efficient methods are chosen to turn the images into edge
maps. Secondly, the network is trained with edge maps of landmark images, which
are automatically obtained by a structure-from-motion pipeline. The learned
representation is evaluated on a range of different tasks, providing
improvements on challenging cases of domain generalization, generic
sketch-based image retrieval or its fine-grained counterpart. In contrast to
other methods that learn a different model per task, object category, or
domain, we use the same network throughout all our experiments, achieving
state-of-the-art results in multiple benchmarks.Comment: ECCV 201
Design and evaluation of PM Ti surfaces modified by colloidal techniques and diffusion processes for biomedical applications
The aim of this work was the modification of the composition and surface microstructure of powder metallurgy titanium to improve the wear resistance and reduce the elastic modulus while maintaining the corrosion behavior, characteristics needed for biomedical applications. For this purpose, Mo and Nb coatings were produced by colloidal techniques. Stable aqueous suspensions were prepared from micro-sized powder of Mo and Nb particles, deposited onto the powder metallurgy titanium substrates (green or sintered). After a heat treatment to promote the diffusion and the consolidation of the layers, microstructural changes were obtained. In the case of green substrates, the co-sintering process provides a diffusion depth of 85-100 micron. In the as-sintered case, a uniform depth of 40-65 microns was reached. The surfaces were characterised by micro-hardness, corrosion and tribocorrosion testing, and the results showed that hardened surfaces presented lower tendency to corrosion both under static conditions and under sliding.Funds were provided by Spanish Government (programme MINECO, ref. MAT2012-38650-C02-01), Regional Government of Madrid (programme MULTIMAT-CHALLENGE, ref. S2013/MIT-2862) and Institute of Alvaro Alonso Barba (IAAB) for the research stay in CMEMS-UMINHO (University of Minho).info:eu-repo/semantics/publishedVersio
Mitral Valve Surgery for Rheumatic Lesions in Young Patients
BACKGROUND: The appropriateness of rheumatic mitral valve repair remains controversial due to the risks of recurrent mitral dysfunction and need for reoperation. The aims of this study were to determine the overall short- and long-term outcomes of pediatric rheumatic mitral valve surgery in our center.
METHODS: Single-center, observational, retrospective study that analyzed the results of rheumatic mitral valve surgery in young patients, consecutively operated by the same team, between 1999 and 2014.
RESULTS: We included 116 patients (mean age = 12.6 ± 3.5 years), of which 66 (57%) were females. A total of 116 primary surgical interventions and 22 reoperations were performed. Primary valve repair was possible in 86 (74%) patients and valve replacement occurred in 30 (26%). Sixty percent of the patients were followed up beyond three months after surgery (median follow-up time = 9.2 months [minimum = 10 days; maximum = 15 years]). Long-term clinical outcomes were favorable, with most patients in New York Heart Association functional class I (89.6%) and in sinus rhythm (85%). Freedom from reoperation for primary valve repair at six months, five years, and ten years was 96.4% ± 0.25%, 72% ± 0.72%, and 44.7% ± 1.34%, respectively. Freedom from reoperation for primary valve replacement at six months, five years, and ten years was 100%, 91.7% ± 0.86%, and 91.7% ± 0.86%, respectively. Mitral stenosis as the primary lesion dictated early reintervention.
CONCLUSIONS: Despite the greater rate of reoperation, especially when the primary lesion was mitral stenosis, rheumatic mitral valve repair provides similar clinical outcomes as compared with replacement, with the advantage of avoiding anticoagulation
- …