29 research outputs found

    Functional implications of calcium permeability of the channel formed by pannexin 1

    Get PDF
    Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca2+-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca2+ diffusion and facilitating intercellular Ca2+ wave propagation. More intriguingly, our results strongly suggest that PanX1 may also form Ca2+-permeable channels in the endoplasmic reticulum (ER). These channels contribute to the ER Ca2+ leak and thereby affect the ER Ca2+ load. Because leakage remains the most enigmatic of those processes involved in intracellular calcium homeostasis, and the molecular nature of the leak channels is as yet unknown, the results of this work provide new insight into calcium signaling mechanisms. These results imply that for vertebrates, a new protein family, referred to as pannexins, may not simply duplicate the connexin function but may also provide additional pathways for intra- and intercellular calcium signaling and homeostasis

    TRPV6 Determines the Effect of Vitamin D3 on Prostate Cancer Cell Growth

    Get PDF
    Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases. We have already shown that TRPV6 calcium channel, which is the direct target of 1,25-dihydroxyvitamin D3 receptor, positively controls prostate cancer proliferation and apoptosis resistance (Lehen'kyi et al., Oncogene, 2007). However, how the known 1,25-dihydroxyvitamin D3 antiproliferative effects may be compatible with the upregulation of pro-oncogenic TRPV6 channel remains a mystery. Here we demonstrate that in low steroid conditions 1,25-dihydroxyvitamin D3 upregulates the expression of TRPV6, enchances the proliferation by increasing the number of cells entering into S-phase. We show that these pro-proliferative effects of 1,25-dihydroxyvitamin D3 are directly mediated via the overexpression of TRPV6 channel which increases calcium uptake into LNCaP cells. The apoptosis resistance of androgen-dependent LNCaP cells conferred by TRPV6 channel is drastically inversed when 1,25-dihydroxyvitamin D3 effects were combined with the successful TRPV6 knockdown. In addition, the use of androgen-deficient DU-145 and androgen-insensitive LNCaP C4-2 cell lines allowed to suggest that the ability of 1,25-dihydroxyvitamin D3 to induce the expression of TRPV6 channel is a crucial determinant of the success or failure of 1,25-dihydroxyvitamin D3-based therapies

    Analogy of Bombieri's number for bounded univalent functions

    No full text
    Bombieri's numbers σmn\sigma_{mn} characterize the behavior of the coefficient body for the class SS of all holomorphic and univalent functions ff in the unit disk normalized by f(z)=z+a2z2+
  .f(z)=z+a_2z^2+\dots\;. The number σmn\sigma_{mn} is the limit of ratio for Re (n−an)\text{Re}\,(n-a_n) and Re (m−am)\text{Re}\,(m-a_m) as ff tends to the Koebe function K(z)=z(1−z)−2K(z)=z(1-z)^{-2}. In particular, σ23=0\sigma_{23=0}. We define analogous numbers σmn(M)\sigma_{mn}(M) for the class S(M)⊂SS(M)\subset S of bounded functions ∣f(z)∣1|f(z)|1, with the limit of ratio for Re (pn(M)−an)\text{Re}\,(p_n(M)-a_n) and Re (pm(M)−am)\text{Re}\,(p_m(M)-a_m) as ff tends to the Pick function PM(z)=MK−1(K(z)/M)=z+∑n=2∞pn(M)zn.P_M(z)=MK^{-1}(K(z)/M)=z+\sum_{n=2}^{\infty}p_n(M)z^n. We prove that σ23(M)=−4/M,\sigma_{23}(M)=-4/M, M>1M>1

    Fine-tuning of eTRPM8 expression and activity conditions keratinocyte fate

    No full text
    International audienceRecently, we reported the cloning and characterization of short isoform of the icilin-activated cold receptor TRPM8 channel in keratinocytes, dubbed eTRPM8. We demonstrated that eTRPM8 via fine tuning of the endoplasmic reticulum (ER) – mitochondria Ca2+ shuttling regulates mitochondrial ATP and superoxide (O2‱-) production and, thereby, mediates control of epidermal homeostasis by mild cold. Here, we provide additional information explaining why eTRPM8 suppression and TRPM8 stimulation both inhibit keratinocyte growth. We also demonstrate that stimulation of eTRPM8 with icilin may give rise to sustained oscillatory responses. Furthermore, we show that ATP-induced cytosolic and mitochondrial Ca2+ responses are attenuated by eTRPM8 suppression. This suggests positive interplay between eTRPM8 and purinergic signaling pathways, what may serve to facilitate the ER-mitochondria Ca2+ shuttling. Finally, we demonstrate that cold (25°C) induces eTRPM8-dependent superoxide-mediated necrosis of keratinocytes. Altogether, these results are in line with our model of eTRPM8-mediated cold-dependent balance between keratinocyte proliferation and differentiatio

    Cellular localization of mitochondria contributes to Kv channel-mediated regulation of cellular excitability in pulmonary but not mesenteric circulation

    No full text
    Mitochondria are proposed to be a major oxygen sensor in hypoxic pulmonary vasoconstriction (HPV), a unique response of the pulmonary circulation to low oxygen tension. Mitochondrial factors including reactive oxygen species, cytochrome c, ATP, and magnesium are potent modulators of voltage-gated K+ (Kv) channels in the plasmalemmal membrane of pulmonary arterial (PA) smooth muscle cells (PASMCs). Mitochondria have also been found close to the plasmalemmal membrane in rabbit main PA smooth muscle sections. Therefore, we hypothesized that differences in mitochondria localization in rat PASMCs and systemic mesenteric arterial smooth muscle cells (MASMCs) may contribute to the divergent oxygen sensitivity in the two different circulations. Cellular localization of mitochondria was compared with immunofluorescent labeling, and differences in functional coupling between mitochondria and Kv channels was evaluated with the patch-clamp technique and specific mitochondrial inhibitors antimycin A (acting at complex III of the mitochondrial electron transport chain) and oligomycin A (which inhibits the ATP synthase). It was found that mitochondria were located significantly closer to the plasmalemmal membrane in PASMCs compared with MASMCs. Consistent with these findings, the effects of the mitochondrial inhibitors on Kv current (IKv) were significantly more potent in PASMCs than in MASMCs. The cytoskeletal disruptor cytochalasin B (10 ÎŒM) also altered mitochondrial distribution in PASMCs and significantly attenuated the effect of antimycin A on the voltage-dependent parameters of IKv. These findings suggest a greater structural and functional coupling between mitochondria and Kv channels specifically in PASMCs, which could contribute to the regulation of PA excitability in HPV

    Molecular mechanism for opioid dichotomy: bidirectional effect of ÎŒ-opioid receptors on P2X₃ receptor currents in rat sensory neurones.

    No full text
    Here, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X(3) purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X(3)-mediated currents with IC(50) ~10 nM in ~25 % of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X(3) currents. All effects of opioid were abolished by selective Ό-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nonselective inhibitor naloxone, and by PLC inhibitor U73122. Thus, we discovered a dual link between purinoceptors and Ό-opioid receptors: the latter exert both inhibitory (pertussis toxin-sensitive) and stimulatory (pertussis toxin-insensitive) actions on P2X(3) receptors through phospholipase C (PLC)-dependent pathways. This dual opioid control of P2X(3) receptors may provide a molecular explanation for dichotomy of opioid therapy. Pharmacological control of this newly identified facilitation/inhibition switch may open new perspectives for the adequate medical use of opioids, the most powerful pain-killing agents known today

    Organelle membrane derived patches: reshaping classical methods for new targets

    No full text
    Abstract Intracellular ion channels are involved in multiple signaling processes, including such crucial ones as regulation of cellular motility and fate. With 95% of the cellular membrane belonging to intracellular organelles, it is hard to overestimate the importance of intracellular ion channels. Multiple studies have been performed on these channels over the years, however, a unified approach allowing not only to characterize their activity but also to study their regulation by partner proteins, analogous to the patch clamp “golden standard”, is lacking. Here, we present a universal approach that combines the extraction of intracellular membrane fractions with the preparation of patchable substrates that allows to characterize these channels in endogenous protein environment and to study their regulation by partner proteins. We validate this method by characterizing activity of multiple intracellular ion channels localized to different organelles and by providing detailed electrophysiological characterization of the regulation of IP3R activity by endogenous Bcl-2. Thus, after synthesis and reshaping of the well-established approaches, organelle membrane derived patch clamp provides the means to assess ion channels from arbitrary cellular membranes at the single channel level

    Opiates Modulate Thermosensation by Internalizing Cold Receptor TRPM8

    Get PDF
    Stimulation of Ό-opioid receptors (OPRMs) brings powerful pain relief, but it also leads to the development of tolerance and addiction. Ensuing withdrawal in abstinent patients manifests itself with severe symptoms, including cold hyperalgesia, often preventing addicted patients from successfully completing the rehabilitation. Unsurprisingly, OPRMs have been a central point of many studies. Nonetheless, a satisfactory understanding of the pathways leading to distorted sensory responses during opiate administration and abstinence is far from complete. Here, we present a mechanism that leads to modulation by OPRMs of one of the sensory responses, thermosensation. Activation of OPRM1 leads to internalization of a cold-sensor TRPM8, which can be reversed by a follow-up treatment with the inverse OPRM agonist naloxone. Knockout of TRPM8 protein leads to a decrease in morphine-induced cold analgesia. The proposed pathway represents a universal mechanism that is probably shared by regulatory pathways modulating general pain sensation in response to opioid treatment

    ORAI1 calcium channel orchestrates skin homeostasis

    No full text
    International audienceTo achieve and maintain skin architecture and homeostasis, keratinocytes must intricately balance growth, differentiation, and polarized motility known to be governed by calcium. Orai1 is a pore subunit of a store-operated Ca(2+) channel that is a major molecular counterpart for Ca(2+) influx in nonexcitable cells. To elucidate the physiological significance of Orai1 in skin, we studied its functions in epidermis of mice, with targeted disruption of the orai1 gene, human skin sections, and primary keratinocytes. We demonstrate that Orai1 protein is mainly confined to the basal layer of epidermis where it plays a critical role to control keratinocyte proliferation and polarized motility. Orai1 loss of function alters keratinocyte differentiation both in vitro and in vivo. Exploring underlying mechanisms, we show that the activation of Orai1-mediated calcium entry leads to enhancing focal adhesion turnover via a PKCÎČ-Calpain-focal adhesion kinase pathway. Our findings provide insight into the functions of the Orai1 channel in the maintenance of skin homeostasis
    corecore