3 research outputs found
The one dimensional Hydrogen atom revisited
The one dimensional Schroedinger hydrogen atom is an interesting mathematical
and physical problem to study bound states, eigenfunctions and quantum
degeneracy issues. This 1D physical system gave rise to some intriguing
controversy over more than four decades. Presently, still no definite consensus
seems to have been reached. We reanalyzed this apparently controversial
problem, approaching it from a Fourier transform representation method combined
with some fundamental (basic) ideas found in self-adjoint extensions of
symmetric operators. In disagreement with some previous claims, we found that
the complete Balmer energy spectrum is obtained together with an odd parity set
of eigenfunctions. Closed form solutions in both coordinate and momentum spaces
were obtained. No twofold degeneracy was observed as predicted by the
degeneracy theorem in one dimension, though it does not necessarily have to
hold for potentials with singularities. No ground state with infinite energy
exists since the corresponding eigenfunction does not satisfy the Schroedinger
equation at the origin.Comment: Accepted for publication in the Canadian Journal of Physics, July
28th, 200
One-dimensional hydrogen atom: A singular potential in quantum mechanics
A generalized Laplace transform approach is developed to study the eigenvalue problem of the one-dimensional singular potential V = -e2/\x\. Matching of solutions at the origin that has been a matter of much controversy is, thereby, made redundant. A discrete and non-degenerate bound-state spectrum results. Existing arguments in the literature that advocate (a) a continuous spectrum, (b) a degeneracy of energy levels as a result of a hidden O(2) symmetry, (c) an infinite negative energy state and (d) an impenetrable barrier at the origin are found to be untenable. It is argued that a judicious use of generalized functions, coupled with some classical considerations, enables the conventional method of solving the problem to recover precisely the same results which are shown to be in accord with an accurate semiclassical analysis of the problem
Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries
Background: Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods: The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results: A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion: Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)