5,470 research outputs found

    Proposed New Antiproton Experiments at Fermilab

    Full text link
    Fermilab operates the world's most intense source of antiprotons. Recently various experiments have been proposed that can use those antiprotons either parasitically during Tevatron Collider running or after the Tevatron Collider finishes in about 2010. We discuss the physics goals and prospects of the proposed experiments.Comment: 6 pages, 2 figures, to appear in Proceedings of IXth International Conference on Low Energy Antiproton Physics (LEAP'08), Vienna, Austria, September 16 to 19, 200

    Nambu-Goldstone Modes in Gravitational Theories with Spontaneous Lorentz Breaking

    Full text link
    Spontaneous breaking of Lorentz symmetry has been suggested as a possible mechanism that might occur in the context of a fundamental Planck-scale theory, such as string theory or a quantum theory of gravity. However, if Lorentz symmetry is spontaneously broken, two sets of questions immediately arise: what is the fate of the Nambu-Goldstone modes, and can a Higgs mechanism occur? A brief summary of some recent work looking at these questions is presented here.Comment: 6 pages. Presented at the meeting "From Quantum to Cosmos," Washington, D.C., May 2006; published in Int. J. Mod. Phys. D16:2357-2363, 200

    The optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure

    Full text link
    This paper provides an analytical description of the transport of ultrahigh energy cosmic rays in an inhomogeneously magnetized intergalactic medium. This latter is modeled as a collection of magnetized scattering centers such as radio cocoons, magnetized galactic winds, clusters or magnetized filaments of large scale structure, with negligible magnetic fields in between. Magnetic deflection is no longer a continuous process, it is rather dominated by scattering events. We study the interaction between high energy cosmic rays and the scattering agents. We then compute the optical depth of the Universe to cosmic ray scattering and discuss the phenomological consequences for various source scenarios. For typical parameters of the scattering centers, the optical depth is greater than unity at 5x10^{19}eV, but the total angular deflection is smaller than unity. One important consequence of this scenario is the possibility that the last scattering center encountered by a cosmic ray be mistaken with the source of this cosmic ray. In particular, we suggest that part of the correlation recently reported by the Pierre Auger Observatory may be affected by such delusion: this experiment may be observing in part the last scattering surface of ultrahigh energy cosmic rays rather than their source population. Since the optical depth falls rapidly with increasing energy, one should probe the arrival directions of the highest energy events beyond 10^{20}eV on an event by event basis to circumvent this effect.Comment: version to appear in PRD; substantial improvements: extended introduction, sections added on angular images and on direction dependent effects with sky maps of optical depth, enlarged discussion of Auger results (conclusions unchanged); 27 pages, 9 figure

    First-order thermal correction to the quadratic response tensor and rate for second harmonic plasma emission

    Full text link
    Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.Comment: 11 pages, 2 figures, submitted to Physics of Plasma

    FIRe glider: Mapping in situ chlorophyll variable fluorescence with autonomous underwater gliders

    Get PDF
    Nutrient and light availability regulate phytoplankton physiology and photosynthesis in the ocean. These physiological processes are difficult to sample in time and space over physiologically and ecologically relevant scales using traditional shipboard techniques. Gliders are changing the nature of data collection, by allowing a sustained presence at sea over regional scales, collecting data at resolution not possible using traditional techniques. The integration of a fluorescence induction and relaxation (FIRe) sensor in a Slocum glider allows autonomous high‐resolution and vertically‐resolved measurements of photosynthetic physiological variables together with oceanographic data. In situ measurements of variable fluorescence under ambient light allows a better understanding of the physical controls of primary production (PP). We demonstrate this capability in a laboratory setting and with several glider deployments in the Southern Ocean. Development of these approaches will allow for the in situ evaluation of phytoplankton light stress and photoacclimation mechanisms, as well as the role of vertical mixing in phytoplankton dynamics and the underlying physiology, especially in remote locations and for prolonged duration

    The Lorentz Integral Transform (LIT) method and its applications to perturbation induced reactions

    Full text link
    The LIT method has allowed ab initio calculations of electroweak cross sections in light nuclear systems. This review presents a description of the method from both a general and a more technical point of view, as well as a summary of the results obtained by its application. The remarkable features of the LIT approach, which make it particularly efficient in dealing with a general reaction involving continuum states, are underlined. Emphasis is given on the results obtained for electroweak cross sections of few--nucleon systems. Their implications for the present understanding of microscopic nuclear dynamics are discussed.Comment: 83 pages, 31 figures. Topical review. Corrected typo

    Brane Universes with Gauss-Bonnet-Induced-Gravity

    Full text link
    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a ``dark energy'' field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density ``Big-Bang'' and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.Comment: 12 pages, 19 figures. Minor modifications to text, comments on phantom behaviour added. References added. As submitted to JCA

    The obscured gamma-ray and UHECR universe

    Full text link
    Auger results on clustering of > 60 EeV ultra-high energy cosmic ray (UHECR) ions and the interpretation of the gamma-ray spectra of TeV blazars are connected by effects from the extragalactic background light (EBL). The EBL acts as an obscuring medium for gamma rays and a reprocessing medium for UHECR ions and protons, causing the GZK cutoff. The study of the physics underlying the coincidence between the GZK energy and the clustering energy of UHECR ions favors a composition of > 60 EeV UHECRs in CNO group nucleons. This has interesting implications for the sources of UHECRs. We also comment on the Auger analysis.Comment: 11 pages, 10 figures, in the International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan, September 11-15, 200

    Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis

    Full text link
    We analyze the influence of decaying sterile neutrinos with the masses in the range 1-140 MeV on the primordial Helium-4 abundance, explicitly solving the Boltzmann equations for all particle species, taking into account neutrino flavour oscillations, and paying special attention to systematic uncertainties. We show that the Helium abundance depends only on the sterile neutrino lifetime and not on the way the active-sterile mixing is distributed between flavours, and derive an upper bound on the lifetime. We also demonstrate that the recent results of Izotov & Thuan [arXiv:1001.4440], who find 2sigma higher than predicted by the standard primordial nucleosynthesis value of Helium-4 abundance, are consistent with the presence in the plasma of sterile neutrinos with the lifetime 0.01-2 seconds. The decay of these particles perturbs the spectra of (decoupled) neutrinos and heats photons, changing the ratio of neutrino to photon energy density, that can be interpreted as extra neutrino species at the recombination epoch.Comment: 17 pp. + Appendices. Analysis of deuterium bounds and more accurate account of CMB bounds on Helium-4 is added. Final version to appear in JCA
    corecore