436 research outputs found

    The Equivalence Theorem in Effective Theories

    Full text link
    The famous equivalence theorem is reexamined in order to make it applicable to the case of intrinsically quantum infinite-component effective theories. We slightly modify the formulation of this theorem and prove it basing on the notion of generating functional for Green functions. This allows one to trace (directly in terms of graphs) the mutual cancelation of different groups of contributions.Comment: 21 pages, 7 figures; v2: Section 4 is modified, plus minor corrections in other sections, version accepted for publication in PR

    Liposomal forms of new antitumor drugs based on europium chelates examined by P-terphenyl fluorescence quenching

    Get PDF
    Europium chelates have been previously shown to possess pronounced cytotoxic activity. These compounds are of great interest for biomedical investigations and diagnostics, because their spectral characteristics are optimal for visualization of the occurred processes. Application of these pharmaceutical compounds in the free form is limited by their high toxicity and metabolic instability. In view of this, the development of the delivery systems for europium chelates becomes actual. Liposomes represent one of the most promising delivery systems, which allows to increase the efficiency of pharmacological agents. The use of liposomal formulations of antitumor drugs is currently in a focus of biomedical and biophysical research due to the following advantages: complete biocompatibility, ability to carry both lipophilic and hydrophilic compounds, protecting them from chemical degradation and transformation, decreased toxicity and increased therapeutic index of drug, etc. In the present work we explore the interaction between europium chelates (here referred to as V6 and V8) and model lipid membranes. Fluorescence intensity of membrane-incorporated probe p-terphenyl was found to decrease with enhancement of drugs concentration. The obtained results indicate that p-terphenyl fluorescence is quenched upon europium chelate incorporation into phosphatidylcholine liposomes. Quantitative characteristics of p-terphenyl fluorescence quenching by the drugs under consideration have been determined

    Fluorimetric study of interaction between europium coordination complexes and DNA

    Get PDF
    Lanthanide coordination complexes have found numerous applications in a number of areas, including laser techniques, fluorescent analysis, biomedical assays. Likewise, they exhibit antitumor properties. Eu(III) tris-β-diketonato complexes (EC) are newly synthesized compounds with high anticancer activity. Despite extensive studies, the detailed mechanism of their biological effects is far from being resolved. Examining the interactions between EC and biological molecules in model systems is essential for deeper understanding of the mechanisms behind their biological activity. In the present work we employed fluorescent probe acridine orange (AO) to investigate EC-DNA interaction. AO-DNA binding was followed by the marked fluorescence increase detected at 530 nm. EC addition suppressed this fluorescent changes. EC were found to differ in their ability to modify AO-DNA interactions. EC4 and EC6 have demonstrated the most pronounced effect on AO-DNA binding. AO-DNA complexation occurs predominantly via intercalation mode. EC are large planar structures, whose DNA intercalating ability was reported to increase with the planarity of ligands. It seems likely that AO and EC can compete for the binding sites on DNA molecule

    Partitioning of europium chelate into lipid bilayer as revealed by p-terphenyl and pyrene quenching

    Get PDF
    Fluorescence quenching method is an effective tool for obtaining important information about different properties of biophysical and biochemical systems. In the present study quenching of fluorescent probes p-terphenyl and pyrene by europium chelate were observed in phosphatidylcholine liposomes. Europium chelates (EC) belong to a new class of potential antitumor drugs with high cytotoxic activity. These compounds are of particular interest for biomedical investigations and diagnostics, since their spectral characteristics are optimal for decrease of light scattering in biological patterns and background signal. However, the application of such drugs in a free form is limited by their high toxicity and metabolic instability. One efficient way to increase drug efficiency is based on using different drug delivery systems such as liposomes. Highly adaptable liposome-based nanocarriers currently attract increasing attention, because of their advantages, viz. complete biodegradability, ability to carry both hydrophilic and lipophilic payloads and protect them from chemical degradation and transformation, increased therapeutic index of drug, flexibility in coupling with targeting and imaging ligands, improved pharmacodynamic profiles compared to the free drugs, etc. The present study was focused on examination of lipid bilayer interactions of europium chelate (here referred to as V10). Fluorescence intensity of membrane- incorporated probes – pyrene and p-terphenyl – was found to decrease with increasing concentration of the drug, suggesting that V10 represents an effective quencher for these probes. This finding was explained by the drug penetration into hydrophobic membrane core, followed by the collision between V10 and probe molecules and subsequent fluorescence quenching. The acquired fluorescence quenching data were quantitatively interpreted in terms of the dynamic quenching model

    Phase diagram and isotope effect in (PrEu)_0.7Ca_0.3CoO_3 cobaltites exhibiting spin-state transitions

    Full text link
    We present the study of magnetization, thermal expansion, specific heat, resistivity, and a.c. susceptibility of (Pr1y_{1-y}Euy_y)0.7_{0.7}Ca0.3_{0.3}CoO3_3 cobaltites. The measurements were performed on ceramic samples with y=0.120.26y = 0.12 - 0.26 and y=1y = 1. Based on these results, we construct the phase diagram, including magnetic and spin-state transitions. The transition from the low- to intermediate-spin state is observed for the samples with y>0.18y > 0.18, whereas for a lower Eu-doping level, there are no spin-state transitions, but a crossover between the ferromagnetic and paramagnetic states occurs. The effect of oxygen isotope substitution along with Eu doping on the magnetic/spin state is discussed. The oxygen-isotope substitution (16^{16}O by 18^{18}O) is found to shift both the magnetic and spin-state phase boundaries to lower Eu concentrations. The isotope effect on the spin-state transition temperature (y>0.18y > 0.18) is rather strong, but it is much weaker for the transition to a ferromagnetic state (y<0.18y < 0.18). The ferromagnetic ordering in the low-Eu doped samples is shown to be promoted by the Co4+^{4+} ions, which favor the formation of the intermediate-spin state of neighboring Co3+^{3+} ions.Comment: 13 pages, including 11 figures, to be published in Phys. Rev.

    Luminescence of Ce3+ multicenters in Ca2+ -Mg2+ -Si4+ based garnet phosphors

    No full text
    Comparison of the luminescent properties of Ca3Sc2Si3O12: Ce and Ca2YMgScSi3O12: Ce single crystalline films (SCF) phosphors, grown by the liquid phase epitaxy method, was performed in this work. We have observed formation of the Ce3+ multicenters in Ca3Sc2Si3O12: Ce and Ca2YMgScSi3O12: Ce in the emission and excitation spectra as well as in the decay kinetics of the Ce3+ luminescence in SCFs of these garnets. Such Ce3+ multicenters possess different crystal field strength due to the inhomogeneous local surroundings of the dodecahedral positions of garnet host at the substitution of the octahedral positions by hetero-valence Mg2+ and Sc3+ ions and the tetrahedral positions by Si4+ ions. We confirm the presence of an effective energy transfer between different Ce3+ multicenters in Ce3+ doped Ca3Sc2Si3O12 and Ca2YMgScSi3O12 garnets. The positive trends in variations of the spectroscopic properties of the Ca2YMgScSi3O12: Ce garnet with respect to Ca3Sc2Si3O12: Ce garnet were observed also due to substitution of the dodecahedral sites of the garnet host by Y3+ ions and the octahedral sites by Mg2+ ions, which can be suitable for the development of new converters of white LEDs. Namely, due to the Y3+-Mg2+ doping, the luminescence spectrum of Ce3+ ions in Ca2YMgScSi3O12: Ce SCFs significantly extends in the red range in comparison with the Ca3Sc2Si3O12: Ce SCF counterpart

    Nanoscale phase separation in La0.7Ca0.3MnO3La_{0.7}Ca_{0.3}MnO_3 films: evidence for the texture driven optical anisotropy

    Full text link
    The IR optical absorption (0.1-1.5 eV) in the La0.7Ca0.3MnO3La_{0.7}Ca_{0.3}MnO_3 films on LAO substrate exhibits the drastic temperature evolution of the spectral weight evidencing the insulator to metal transition. Single crystal films were found to reveal strong linear dichroism with anomalous spectral oscillations and fairly weak temperature dependence. Starting from the concept of phase separation, we develop the effective medium model to account for these effects. The optical anisotropy of the films is attributed to the texturization of the ellipsoidal inclusions of the quasimetal phase caused by a mismatch of the film and substrate and the twin texture of the latter.Comment: 6 pages, 5 Encapsulated PostScript figures, uses RevTeX

    Interplaying Cassandra NoSQL Consistency and Performance: A Benchmarking Approach

    Get PDF
    This experience report analyses performance of the Cassandra NoSQL database and studies the fundamental trade-off between data consistency and delays in distributed data storages. The primary focus is on investigating the interplay between the Cassandra performance (response time) and its consistency settings. The paper reports the results of the read and write performance benchmarking for a replicated Cassandra cluster, deployed in the Amazon EC2 Cloud. We present quantitative results showing how different consistency settings affect the Cassandra performance under different workloads. One of our main findings is that it is possible to minimize Cassandra delays and still guarantee the strong data consistency by optimal coordination of consistency settings for both read and write requests. Our experiments show that (i) strong consistency costs up to 25% of performance and (ii) the best setting for strong consistency depends on the ratio of read and write operations. Finally, we generalize our experience by proposing a benchmarking-based methodology for run-time optimization of consistency settings to achieve the maximum Cassandra performance and still guarantee the strong data consistency under mixed workloads

    Solving the Simplest Theory of Quantum Gravity

    Full text link
    We solve what is quite likely the simplest model of quantum gravity, the worldsheet theory of an infinitely long, free bosonic string in Minkowski space. Contrary to naive expectations, this theory is non-trivial. We illustrate this by constructing its exact factorizable S-matrix. Despite its simplicity, the theory exhibits many of the salient features expected from more mature quantum gravity models, including the absence of local off-shell observables, a minimal length, a maximum achievable (Hagedorn) temperature, as well as (integrable relatives of) black holes. All these properties follow from the exact S-matrix. We show that the complete finite volume spectrum can be reconstructed analytically from this S-matrix with the help of the thermodynamic Bethe Ansatz. We argue that considered as a UV complete relativistic two-dimensional quantum field theory the model exhibits a new type of renormalization group flow behavior, "asymptotic fragility". Asymptotically fragile flows do not originate from a UV fixed point.Comment: 32+4 pages, 1 figure, v2: typos fixed, published versio
    corecore