153 research outputs found

    The Interplay Between θ\theta and T

    Full text link
    We extend a recent computation of the dependence of the free energy, F, on the noncommutative scale θ\theta to theories with very different UV sensitivity. The temperature dependence of FF strongly suggests that a reduced number of degrees of freedom contributes to the free energy in the non-planar sector, FnpF_{\rm np}, at high temperature. This phenomenon seems generic, independent of the UV sensitivity, and can be traced to modes whose thermal wavelengths become smaller than the noncommutativity scale. The temperature dependence of FnpF_{\rm np} can then be calculated at high temperature using classical statistical mechanics, without encountering a UV catastrophe even in large number of dimensions. This result is a telltale sign of the low number of degrees of freedom contributing to FF in the non-planar sector at high temperature. Such behavior is in marked contrast to what would happen in a field theory with a random set of higher derivative interactions.Comment: 14 pages, 1 eps figur

    An iterative algorithm for parametrization of shortest length shift registers over finite rings

    Get PDF
    The construction of shortest feedback shift registers for a finite sequence S_1,...,S_N is considered over the finite ring Z_{p^r}. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S_1,...,S_N, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S_1, and constructs at each step a particular type of minimal Gr\"obner basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reciprocal sequence S_N,...,S_1.Comment: Submitte

    Surveying Pseudomoduli: the Good, the Bad and the Incalculable

    Full text link
    We classify possible types of pseudomoduli which arise when supersymmetry is dynamically broken in infrared-free low-energy theories. We show that, even if the pseudomoduli potential is generated only at higher loops, there is a regime where the potential can be simply determined from a combination of one-loop running data. In this regime, we compute whether the potential for the various types of pseudomoduli is safe, has a dangerous runaway to the UV cutoff of the low-energy theory, or is incalculable. Our results are applicable to building new models of supersymmetry breaking. We apply the results to survey large classes of models.Comment: 34 page

    Sub-threshold resonances in few-neutron systems

    Get PDF
    Three- and four-neutron systems are studied within the framework of the hyperspherical approach with a local S-wave nn-potential. Possible bound and resonant states of these systems are sought as zeros of three- and four-body Jost functions in the complex momentum plane. It is found that zeros closest to the origin correspond to sub-threshold (nnn) (1/2-) and (nnnn) (0+) resonant states. The positions of these zeros turned out to be sensitive to the choice of the nnnn--potential. For the Malfliet- Tjon potential they are E(nnn)=-4.9-i6.9 (MeV) and E(nnnn)=-2.6-i9.0 (MeV). Movement of the zeros with an artificial increase of the potential strength also shows an extreme sensitivity to the choice of potential. Thus, to generate ^3n and ^4n bound states, the Yukawa potential needs to be multiplied by 2.67 and 2.32 respectively, while for the Malfliet-Tjon potential the required multiplicative factors are 4.04 and 3.59.Comment: Latex, 22 pages, no PS-figures, submitted to J.Phys.

    Anomaly-Free Brane Worlds in Seven Dimensions

    Get PDF
    We present an orbifold compactification of the minimal seven dimensional supergravity. The vacuum is a slice of AdS_7 where six-branes of opposite tension are located at the orbifold fixed points. The cancellation of gauge and gravitational anomalies restricts the gauge group and matter content on the boundaries. In addition anomaly cancellation fixes the boundary gauge couplings in terms of the gravitational constant, and the mass parameter of the Chern-Simons term.Comment: 10 pages, LaTeX; v2: typos corrected, references adde

    Geometry and symmetries of multi-particle systems

    Get PDF
    The quantum dynamical evolution of atomic and molecular aggregates, from their compact to their fragmented states, is parametrized by a single collective radial parameter. Treating all the remaining particle coordinates in d dimensions democratically, as a set of angles orthogonal to this collective radius or by equivalent variables, bypasses all independent-particle approximations. The invariance of the total kinetic energy under arbitrary d-dimensional transformations which preserve the radial parameter gives rise to novel quantum numbers and ladder operators interconnecting its eigenstates at each value of the radial parameter. We develop the systematics and technology of this approach, introducing the relevant mathematics tutorially, by analogy to the familiar theory of angular momentum in three dimensions. The angular basis functions so obtained are treated in a manifestly coordinate-free manner, thus serving as a flexible generalized basis for carrying out detailed studies of wavefunction evolution in multi-particle systems.Comment: 37 pages, 2 eps figure

    Extramedullary Hematopoiesis Generates Ly-6C(high) Monocytes That Infiltrate Atherosclerotic Lesions

    Get PDF
    BACKGROUND: Atherosclerotic lesions are believed to grow via the recruitment of bone marrow-derived monocytes. Among the known murine monocyte subsets, Ly-6C(high) monocytes are inflammatory, accumulate in lesions preferentially, and differentiate. Here we hypothesized that the bone marrow outsources the production of Ly-6C(high) monocytes during atherosclerosis. METHODS AND RESULTS: Using murine models of atherosclerosis and fate-mapping approaches, we show that hematopoietic stem and progenitor cells (HSPC) progressively relocate from the bone marrow to the splenic red pulp where they encounter GM-CSF and IL-3, clonally expand, and differentiate to Ly-6C(high) monocytes. Monocytes born in such extramedullary niches intravasate, circulate, and accumulate abundantly in atheromata. Upon lesional infiltration, Ly-6C(high) monocytes secrete inflammatory cytokines, reactive oxygen species, and proteases. Eventually, they ingest lipids and become foam cells. CONCLUSIONS: Our findings indicate that extramedullary sites supplement the bone marrow’s hematopoietic function by producing circulating inflammatory cells that infiltrate atherosclerotic lesions

    Superconductivity in Ropes of Single-Walled Carbon Nanotubes

    Full text link
    We report measurements on ropes of Single Walled Carbon Nanotubes (SWNT) in low-resistance contact to non-superconducting (normal) metallic pads, at low voltage and at temperatures down to 70 mK. In one sample, we find a two order of magnitude resistance drop below 0.55 K, which is destroyed by a magnetic field of the order of 1T, or by a d.c. current greater than 2.5 microA. These features strongly suggest the existence of superconductivity in ropes of SWNT.Comment: Accepted for publication in Phys. Rev. Let

    Flavor Mediation Delivers Natural SUSY

    Get PDF
    If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to flavor constraints and a little discussion adde
    corecore