348 research outputs found

    Entropy Balance and Dispersive Oscillations in Lattice Boltzmann Models

    Full text link
    We conduct an investigation into the dispersive post-shock oscillations in the entropic lattice-Boltzmann method (ELBM). To this end we use a root finding algorithm to implement the ELBM which displays fast cubic convergence and guaranties the proper sign of dissipation. The resulting simulation on the one-dimensional shock tube shows no benefit in terms of regularization from using the ELBM over the standard LBGK method. We also conduct an experiment investigating of the LBGK method using median filtering at a single point per time step. Here we observe that significant regularization can be achieved.Comment: 18 pages, 4 figures; 13/07/2009 Matlab code added to appendi

    Possibility and Impossibility of the Entropy Balance in Lattice Boltzmann Collisions

    Full text link
    We demonstrate that in the space of distributions operated on by lattice Boltzmann methods that there exists a vicinity of the equilibrium where collisions with entropy balance are possible and, at the same time, there exist an area of nonequilibrium distributions where such collisions are impossible. We calculate and graphically represent these areas for some simple entropic equilibria using single relaxation time models. Therefore it is shown that the definition of an entropic LBM is incomplete without a strategy to deal with certain highly nonequilibrium states. Such strategies should be explicitly stated as they may result in the production of additional entropy.Comment: v2 minor misprint correction

    Reciprocal Relations Between Kinetic Curves

    Full text link
    We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, x˙=Kx\dot{x}=Kx, the kinetic operator KK is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, exp(Kt)\exp (Kt), is also a symmetric operator. This generates the reciprocity relations between the kinetic curves. For example, for the Master equation, if we start the process from the iith pure state and measure the probability pj(t)p_j(t) of the jjth state (jij\neq i), and, similarly, measure pi(t)p_i(t) for the process, which starts at the jjth pure state, then the ratio of these two probabilities pj(t)/pi(t)p_j(t)/p_i(t) is constant in time and coincides with the ratio of the equilibrium probabilities. We study similar and more general reciprocal relations between the kinetic curves. The experimental evidence provided as an example is from the reversible water gas shift reaction over iron oxide catalyst. The experimental data are obtained using Temporal Analysis of Products (TAP) pulse-response studies. These offer excellent confirmation within the experimental error.Comment: 6 pages, 1 figure, the final versio

    Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability

    Get PDF
    Taking advantage of a closed-form generalized Maxwell distribution function [ P. Asinari and I. V. Karlin Phys. Rev. E 79 036703 (2009)] and splitting the relaxation to the equilibrium in two steps, an entropic quasiequilibrium (EQE) kinetic model is proposed for the simulation of low Mach number flows, which enjoys both the H theorem and a free-tunable parameter for controlling the bulk viscosity in such a way as to enhance numerical stability in the incompressible flow limit. Moreover, the proposed model admits a simplification based on a proper expansion in the low Mach number limit (LQE model). The lattice Boltzmann implementation of both the EQE and LQE is as simple as that of the standard lattice Bhatnagar-Gross-Krook (LBGK) method, and practical details are reported. Extensive numerical testing with the lid driven cavity flow in two dimensions is presented in order to verify the enhancement of the stability region. The proposed models achieve the same accuracy as the LBGK method with much rougher meshes, leading to an effective computational speed-up of almost three times for EQE and of more than four times for the LQE. Three-dimensional extension of EQE and LQE is also discussed

    Stabilisation of the lattice-Boltzmann method using the Ehrenfests' coarse-graining

    Full text link
    The lattice-Boltzmann method (LBM) and its variants have emerged as promising, computationally efficient and increasingly popular numerical methods for modelling complex fluid flow. However, it is acknowledged that the method can demonstrate numerical instabilities, e.g., in the vicinity of shocks. We propose a simple and novel technique to stabilise the lattice-Boltzmann method by monitoring the difference between microscopic and macroscopic entropy. Populations are returned to their equilibrium states if a threshold value is exceeded. We coin the name Ehrenfests' steps for this procedure in homage to the vehicle that we use to introduce the procedure, namely, the Ehrenfests' idea of coarse-graining. The one-dimensional shock tube for a compressible isothermal fluid is a standard benchmark test for hydrodynamic codes. We observe that, of all the LBMs considered in the numerical experiment with the one-dimensional shock tube, only the method which includes Ehrenfests' steps is capable of suppressing spurious post-shock oscillations.Comment: 4 pages, 9 figure

    PCA Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes

    Full text link
    Multidimensional data distributions can have complex topologies and variable local dimensions. To approximate complex data, we propose a new type of low-dimensional ``principal object'': a principal cubic complex. This complex is a generalization of linear and non-linear principal manifolds and includes them as a particular case. To construct such an object, we combine a method of topological grammars with the minimization of an elastic energy defined for its embedment into multidimensional data space. The whole complex is presented as a system of nodes and springs and as a product of one-dimensional continua (represented by graphs), and the grammars describe how these continua transform during the process of optimal complex construction. The simplest case of a topological grammar (``add a node'', ``bisect an edge'') is equivalent to the construction of ``principal trees'', an object useful in many practical applications. We demonstrate how it can be applied to the analysis of bacterial genomes and for visualization of cDNA microarray data using the ``metro map'' representation. The preprint is supplemented by animation: ``How the topological grammar constructs branching principal components (AnimatedBranchingPCA.gif)''.Comment: 19 pages, 8 figure

    Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization

    Full text link
    Principal manifolds are defined as lines or surfaces passing through ``the middle'' of data distribution. Linear principal manifolds (Principal Components Analysis) are routinely used for dimension reduction, noise filtering and data visualization. Recently, methods for constructing non-linear principal manifolds were proposed, including our elastic maps approach which is based on a physical analogy with elastic membranes. We have developed a general geometric framework for constructing ``principal objects'' of various dimensions and topologies with the simplest quadratic form of the smoothness penalty which allows very effective parallel implementations. Our approach is implemented in three programming languages (C++, Java and Delphi) with two graphical user interfaces (VidaExpert http://bioinfo.curie.fr/projects/vidaexpert and ViMiDa http://bioinfo-out.curie.fr/projects/vimida applications). In this paper we overview the method of elastic maps and present in detail one of its major applications: the visualization of microarray data in bioinformatics. We show that the method of elastic maps outperforms linear PCA in terms of data approximation, representation of between-point distance structure, preservation of local point neighborhood and representing point classes in low-dimensional spaces.Comment: 35 pages 10 figure
    corecore