411 research outputs found

    Design specification for LACIE formatted dot cards in EOD-LARSYS

    Get PDF
    There are no author-identified significant results in this report

    Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble

    Full text link
    We propose a novel scheme for the efficient production of "NOON states" based on the resonant interaction of a pair of quantized cavity modes with an ensemble of atoms. We show that in the strong-coupling regime the adiabatic evolution of the system tends to a limiting state that describes mesoscopic entanglement between photons and atoms which can easily be converted to a purely photonic or atomic NOON state. We also demonstrate the remarkable property that the efficiency of this scheme increases exponentially with the cavity cooperativity factor, which gives efficient access to high number NOON states. The experimental feasibility of the scheme is discussed and its efficiency is demonstrated numerically.Comment: 4 pages, 3 figure

    Influence of relaxation on propagation, storage and retrieving of light pulses in electromagnetically induced transparency medium

    Full text link
    By solving the self-consistent system of Maxwell and density matrix equations to the first order with respect to nonadiabaticity, we obtain an analytical solution for the probe pulse propagation. The conditions for efficient storage of light are analyzed. The necessary conditions for optical propagation distance has been obtained.Comment: 7 pages, 7 figure

    Program documentation: Final design specification for dot data base update deck conversion program (DOTDEC)

    Get PDF
    There are no author-identified significant results in this report

    Program documentation: As-built design specification for Generalized Linear Model Analysis Of Variance program (GLMAOV)

    Get PDF
    There are no author-identified significant results in this report

    Canonical quantization of the WZW model with defects and Chern-Simons theory

    Full text link
    We perform canonical quantization of the WZW model with defects and permutation branes. We establish symplectomorphism between phase space of WZW model with NN defects on cylinder and phase space of Chern-Simons theory on annulus times RR with NN Wilson lines, and between phase space of WZW model with NN defects on strip and Chern-Simons theory on disc times RR with N+2N+2 Wilson lines. We obtained also symplectomorphism between phase space of the NN-fold product of the WZW model with boundary conditions specified by permutation branes, and phase space of Chern-Simons theory on sphere with NN holes and two Wilson lines.Comment: 26 pages, minor corrections don

    Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer

    Full text link
    Deep saline aquifers are promising geological reservoirs for CO2 sequestration if they do not leak. The absence of leakage is provided by the caprock integrity. However, CO2 injection operations may change the geomechanical stresses and cause fracturing of the caprock. We present a model for the propagation of a fracture in the caprock driven by the outflow of fluid from a low-permeability aquifer. We show that to describe the fracture propagation, it is necessary to solve the pressure diffusion problem in the aquifer. We solve the problem numerically for the two-dimensional domain and show that, after a relatively short time, the solution is close to that of one-dimensional problem, which can be solved analytically. We use the relations derived in the hydraulic fracture literature to relate the the width of the fracture to its length and the flux into it, which allows us to obtain an analytical expression for the fracture length as a function of time. Using these results we predict the propagation of a hypothetical fracture at the In Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also show that the hydrostatic and geostatic effects cause the increase of the driving force for the fracture propagation and, therefore, our solution serves as an estimate from below. Numerical estimates show that if a fracture appears, it is likely that it will become a pathway for CO2 leakage.Comment: 21 page

    Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism

    Get PDF
    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg(104)-Glu(1032) salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with increase in NaCl concentration from 50 mM to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s20, w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar RG values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl, this being greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically-relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less able to bind to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b
    corecore