414 research outputs found
Design specification for LACIE formatted dot cards in EOD-LARSYS
There are no author-identified significant results in this report
Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble
We propose a novel scheme for the efficient production of "NOON states" based
on the resonant interaction of a pair of quantized cavity modes with an
ensemble of atoms. We show that in the strong-coupling regime the adiabatic
evolution of the system tends to a limiting state that describes mesoscopic
entanglement between photons and atoms which can easily be converted to a
purely photonic or atomic NOON state. We also demonstrate the remarkable
property that the efficiency of this scheme increases exponentially with the
cavity cooperativity factor, which gives efficient access to high number NOON
states. The experimental feasibility of the scheme is discussed and its
efficiency is demonstrated numerically.Comment: 4 pages, 3 figure
Program documentation: Final design specification for dot data base update deck conversion program (DOTDEC)
There are no author-identified significant results in this report
Influence of relaxation on propagation, storage and retrieving of light pulses in electromagnetically induced transparency medium
By solving the self-consistent system of Maxwell and density matrix equations
to the first order with respect to nonadiabaticity, we obtain an analytical
solution for the probe pulse propagation. The conditions for efficient storage
of light are analyzed. The necessary conditions for optical propagation
distance has been obtained.Comment: 7 pages, 7 figure
Program documentation: As-built design specification for Generalized Linear Model Analysis Of Variance program (GLMAOV)
There are no author-identified significant results in this report
Canonical quantization of the WZW model with defects and Chern-Simons theory
We perform canonical quantization of the WZW model with defects and
permutation branes. We establish symplectomorphism between phase space of WZW
model with defects on cylinder and phase space of Chern-Simons theory on
annulus times with Wilson lines, and between phase space of WZW model
with defects on strip and Chern-Simons theory on disc times with
Wilson lines. We obtained also symplectomorphism between phase space of the
-fold product of the WZW model with boundary conditions specified by
permutation branes, and phase space of Chern-Simons theory on sphere with
holes and two Wilson lines.Comment: 26 pages, minor corrections don
Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer
Deep saline aquifers are promising geological reservoirs for CO2
sequestration if they do not leak. The absence of leakage is provided by the
caprock integrity. However, CO2 injection operations may change the
geomechanical stresses and cause fracturing of the caprock. We present a model
for the propagation of a fracture in the caprock driven by the outflow of fluid
from a low-permeability aquifer. We show that to describe the fracture
propagation, it is necessary to solve the pressure diffusion problem in the
aquifer. We solve the problem numerically for the two-dimensional domain and
show that, after a relatively short time, the solution is close to that of
one-dimensional problem, which can be solved analytically. We use the relations
derived in the hydraulic fracture literature to relate the the width of the
fracture to its length and the flux into it, which allows us to obtain an
analytical expression for the fracture length as a function of time. Using
these results we predict the propagation of a hypothetical fracture at the In
Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also
show that the hydrostatic and geostatic effects cause the increase of the
driving force for the fracture propagation and, therefore, our solution serves
as an estimate from below. Numerical estimates show that if a fracture appears,
it is likely that it will become a pathway for CO2 leakage.Comment: 21 page
Solution structure of deglycosylated human IgG1 shows the role of CH2 glycans in its conformation
The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16–0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1
- …