NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

JSC-13837 NASA CR-160639

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereof."

DESIGN SPECIFICATION

FOR

LACIE FORMATTED DOT CARDS IN EOD-LARSYS

Job Order 71-695

TIRF 77-0070

(E80-10215) DESIGN SPECIFICATION FOR LACIE N80-29793 FORMATTED DOT CARDS IN EOD-LARSYS (Lockheed Electronics Co.) 14 p HC A02/MF A01 CSCL 05B Unclas G3/43 00215

Prepared By

Lockheed Electronics Company, Inc.

Systems and Services Division

Houston, Texas

Contract NAS 9-15200

For

EARTH OBSERVATIONS DIVISION

SPACE AND LIFE SCIENCES DIRECTORATE

National Aeronautics and Space Administration LYNDON B. JOHNSON SPACE CENTER

Houston, Texas

December 1977

LEC-11703

JSC-13837

DESIGN SPECIFICATION FOR

LACIE FORMATTED DOT CARDS IN EOD-LARSYS

Job Order 71-695

TIRF 77-0070

Prepared by

P. J. Aucoin Jr. Jeannie Gor

APPROVED BY

LEC ip L. Krumm, Supervisor ications Software Section

BL Canoll

B. L. Carroll, Manager LACIE Development and Evaluation Department

Prepared by Lockheed Electronics Company, Inc.

For

Earth Observations Division

Science and Applications Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

December 1977

LEC-11703

i

CONTENTS

Section	נ														Page
1.	SCOPE	•••	•		•	•		•	•	•	•	•	•	•	1-1
2.	APPLI	CABLE	DOC	UMEN	TS.	•	•	•	•	•	•	•	•	•	2-1
3.	SYSTE	M DESC	RIP	TION		•	•	•	.•	•	•	•	•	•	3-1
	3.1	HARDWA	ARE	DESC	RIPT	ION	•	•	•	•	•	•	•	•	3-1
	3.2	SOFTWA	ARE	DESC	RIPT	ION	•	•	•	•	•	•	•	•	3-1
	3.2.1	SOFT	WAR	E CC	MPON	ENT	NO.	1	(SI	ET13	3)	•	•	•	3-1
	3.2.2	SOFT	rwar	E CC	MPON	ENT	NO.	2	(F)	DL	C)				3-2

1. SCOPE

This document contains a preliminary design specification for an augumentation to the Procedure 1 EOD-LARSYS system. This addition involves reading starting and/or bias dots in the LACIE format from the DOTDATA processor.

It is planned to implement this addition on the UNIVAC EXEC II version of EOD-LARSYS and then implement the changes on the Purdue-LARS IBM 370/148 version currently under conversion.

2. APPLICABLE DOCUMENTS

- As-Built Design Specification for EOD-LARSYS Procedure 1
- TIRF: 77-0070

3. SYSTEM DESCRIPTION

3.1 HARDWARE DESCRIPTION

N/A

3.2 SOFTWARE DESCRIPTION

The DOTDATA processor of the EOD-LARSYS system will be expanded to accept dot (field) cards in the LACIE Procedure 1 format. These cards have the general form:

DOT (TYPE) (CATEGORY) { (LACIE NUMBERS) }

where

DOT:	starts in col. 1	
TYPE:	= 1 or 2	
CATEGORY:	l character category i	dentifier
LACIE NUMBER:	integer value from 1 t	o 209.

This addition will require an additional option read by subprogram SET13 and flagged by an additional variable in the DOTVEC labeled common block. A new routine, FLDLAC, will be added to read and decode the dot cards.

In order to specify dots not covered by LACIE numbers, a special code will be implemented. This code will consist of line and sample incrementors added to the LACIE number.

3.2.1 SOFTWARE COMPONENT NO. 1 (SET13)

Subprogram SET13 reads the control cards needed for dot processing.

3.2.1.1 Linkages

SET13 is called by routine DOTDAT and in turn calls utilities . NUMBER, NXTCHR, FIND, and ORDER.

3.2.1.2 Interfaces

SET13 interfaces with other routines by means of common blocks DOTVEC, INFORM, and GLOBAL.

3.2.1.3 Inputs

New/Revised Control Cards

OPTION LACIE

Turn on LACIE dot format option

3.2.14 Outputs

N/A

3.2.1.5 Storage Requirements

TBD

3.2.1.6 Description

The option LACIE will be added to the OPTION control card. The variable named LACIE will be added to the DOTVEC labeled common block. LACIE will be initialized to the value 0. Upon encountering an OPTION LACIE control card, LACIE will be reset to the value 1, indicating LACIE type dot (field) cards will follow the *END* card.

3.2.1.7 Flow Chart

N/A

3.2.1.8 Listing

TBP

3.2.2 SOFTWARE COMPONENT NO. 2 (FLDLAC)

The new subprogram FLDLAC will read and decode the LACIE formatted field (dot) cards.

4

3.2.2.1 Linkages

FLDLAC will be called by subprogram DOCS if LACIE \neq 0. Each call to FLDLAC will provide, upon return

1. a dot (field) description (first return)

2. transfer to dot file writing (second return)

3. transfer to dot file writing (third return)

3.2.2.2 Interfaces

FLDLAC will interface with other routines thorugh a calling sequence and common blocks DOTVEC and INFORM.

3.2.2.3 Inputs

Calling Sequence:

SUBROUTINE FLDLAC (FIELDS, STAMNT, \$, \$, \$, IPT, VERTEX)

Parameter	Dimension	In/out	Description
FIELDS	(4,250)	Out	Category name and dot type for dot I stored in FIELDS (1,I) and FIELDS (4,I).
STAMNT	1	In/out	Initially set equal to 1, switch to indicate dots being taken from currently read card.
\$ \$ \$			returns to DOTS
IPT	1	In/out	Initially set equal to 1, index number for field vertex information.

Parameter	Dimension	In/out	Description			
VERTEX	1000	Out	Vertex information for			
			each dot.			

In addition, FLDLAC stores the FLDINF vector in common block DOTVEC with rectangular cc ordinates of field enclosing each dot field.

3.2.2.4 Outputs

N/A

3.2.2.5 Storage Requirements

TBD

3.2.2.6 Description

The DOTDATA processor will be modified to permit reading and processing of dot cards of the form

DOT	(TYPE)	((CATEG	ORY NAME)		({LACIE	NUMBERS	ر ^ي ({5
DOT	1	W	2	5	10	29	32	54	110

The present processing uses input training field formats. "TYPE" cards are used to prefix a set of dots. This will remain as the default option. The association between LACIE numbers and training field co ordinates is as follows.

				Sł	AMPLE	NUMB	ER	
		10	20	30	•	•	•	190
LINE	10 20	1 20	2	3				19 38
NUMBER	30	39						57
	:			LAC NUM	BERS			÷
	110	191						209

It is intended that two expansions of the LACIE card format be incorporated. These are

- free-field locations of all information cards, cols 1-72, data items separated by at least one blank, with the restriction that DOT identifiers start in col 1, and the dot type appear in column 5.
- In order to cover pixels not included in the LACIE numbering scheme, input dot numbers will be represented as the numerical equivalents of

 $N = L*10^8 + S*10^4 + LACIE$

where

LI = #lines to be incremented (up or down) from the line
 number mapped from the LACIE number. The convention will
 will be

LI	negative	to	increment up
LI	positive	to	increment down
LI	zero	to	avoid incrementation

SI = #samples to be incremented (right or left)

SI	negative	to	increment	left
SI	positive	to	increment	right
SI	zero	to	avoid inc	rementation

For example, LI=2, SI= -3, LACIE = 38 yields $N = 2*10^8 - 3*10^4 + 38 = 199970038$ would correspond to the pixel at (187,22), ie, the pixel at sample number 187 and line number 22. Letting LI= SI=0, LACIE = 38, obtain N = 38, correspond to the pixel at (190,20). Reduction of the value of N to sample and line co ordinates will proceed as follows.

 $N_1 = |N|/10^8$ (truncated to integer) if $|N| - N_{1} * 10^{8} \ge 10^{7}$ set $N_{1} = N_{1} + 1$ $LI = N_1 * sign (N)$ $|N_2| = N - L * 10^8$ $N_3 = |N_2|/10^4$ (truncated to integer) $|N_2| - N_3 * 10^4 \ge 10^3$ set $N_3 = N_3 + 1$ if $SI = N_3^* sign (N_2)$ LACIE = $N_2 - S*10^4$ LR = LACIE ROW = (LACIE/19 + 1) *10LS = LACIE COL# = (LACIE - ((LR-1)*19)/10)*10where truncated divides are specified. Finally, L = LR + LIline number corresponding to N S = LS + SIsample (column) number corresponding to N.

In the scheme to follow, each dot will be considered to be a field. All type 1 dots will occur prior to type 2 dots, ie, the input cards cannot be scrambled with respect to dot type. Otherwise, arbitrary order to cards and LACIE numbers on each card are permitted.

At present, subprogram FLDTYP, called by DOTS, processes dot cards. This routine is not easily modified to accept the LACIE format. Consequently a new subprogram, FLDLAC, will be written and called instead of FLDTYP from DOTS if LACIE = 0. It will be called from DOTS as

CALL FLDLAC (FIELDS, STAMNT, \$100, \$510, \$520, IPT, VERTEX) Initialization, at the start of the DOTS routine, will invoke

8

IPT = 1 STAMNT = 1 NOFLD2 = 0 TYPE = 1

(The description assumes UNIVAC Fortran V conventions, these will be modified to correspond to IBM Fortran IV conventions when these modifications are added to the converted EOD-LARSYS system). Subprogram FLDLAC will have the following structure. SUBROUTINE FLDLAC (Fields, STAMNT, *, *, *, IPT, VERTEX) IMPLICIT INTEGER (A-Z) DIMENSION FIELDS(4,1), VERTEX(1), CARD(62), LDØTS(30) LOGICAL SWITCH SWITCH/.TRUE./, SWCHG/0/,ENDBCD/\$END/ DATA (/ INFORM/) INCLUDE COMBK1 CMBK14 (/ DOTVEC /)INCLUDE

The function of the various parameters is as follows. IPT index number for dot (field) vertex information NOFLD2 number of fields (dots) for dots of current type (common block INFORM)

- SWCHG number of times dot type has changed. This must be no greater than 1 or an input error will have occurred.
- SWITCH flags a dot type change. The second return will be taken for subsequent writing of a dot field. (internal)
- STAMNT if = 1, a new dot card has been ready if = 2, dots are being processed from a previously read card.

TYPE dot type being processed (common block DOTVEC)

The calling sequence of FLDLAC is the same as that for FLDTYP, and the meaning of FIELDS and VERTEX remains the same.

IF (STAMNT.EQ.2) G\$ T\$ 30 IF (.NOT.SWITCH) GO TO 20 10 READ A CARD, extract TYPES from column 5 If (TYPE.EQ.TYPES) GO TO 20 If (SWCHG.NE.0) error e.it TYPE=TYPES 20 RE-READ CARD, extract CATNM category name NDCARD #dots on this card ND\$TS(I), I=1,NDCARD dots on this card If (NDCARD.EQ.0) G\$ T\$ 10 ICNT = 0STAMNT = 2SW TCH = .TRUE. GØ TØ 100 30 If (ICNT.LT.NDCARD) GO TO 100 STAMNT = 1= 0 ICNT READ A CARD, extract first 4 characters and store in IDUM, extract TYPES IF (IDUM, EQ. ENDBCD) RETURN 5 IF (TYPE.EQ.TYPES) GØ TØ 20 SWITCH. = .FALSE. SWCHG = SWCHG+1IF (SWCHG.GT.1) error exit $N \phi FLD2 = 0; TYPE = TYPES$ IPT = 1**RETURN 4**

10

100

INCNT = ICNT+1 $N\phi FLD2 = N\phi FLD2+1$ find sample and line numbers S and L from NDØTS (ICNT) as described previously. Store FIELDS $(1, N\phi FLD2) = CATNM$ FIELDS $(4, N\phi FLD2) = 2$ FLDINF(1) = LFLDINF (2) = LFLDINF(3) = 1rectangular bodering field (dot) $FLD^{T}NF(4) = S$ FLDINF (5) = SFLDINF (6) = 1VERTEX (IPT) = S VERTEX (IPT+1) = LVERTEX (IPT+2) = SVERTEX (IPT+3) = LIPT = IPT + 4RETURN

END

Regarding the extraction of dot numbers NDOTS(I), I=1, NDCARD, a new routine, NUMBR, similar to existing function NUMBER will be provided. The differences will be

NUMBR will recognize blanks instead of commas as delimiters
 NUMBR will process only one card of information

3.2.2.7 Flow Chart TBP

3.2.2.8 Listing TBP