30 research outputs found
Lower bounds for constant query affine-invariant LCCs and LTCs
Affine-invariant codes are codes whose coordinates form a vector space over a
finite field and which are invariant under affine transformations of the
coordinate space. They form a natural, well-studied class of codes; they
include popular codes such as Reed-Muller and Reed-Solomon. A particularly
appealing feature of affine-invariant codes is that they seem well-suited to
admit local correctors and testers.
In this work, we give lower bounds on the length of locally correctable and
locally testable affine-invariant codes with constant query complexity. We show
that if a code is an -query
locally correctable code (LCC), where is a finite field and
is a finite alphabet, then the number of codewords in is
at most . Also, we show that if
is an -query locally testable
code (LTC), then the number of codewords in is at most
. The dependence on in these
bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan
(ITCS `13) construct affine-invariant codes via lifting that have the same
asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas
previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive
similar results.
Our analysis uses higher-order Fourier analysis. In particular, we show that
the codewords corresponding to an affine-invariant LCC/LTC must be far from
each other with respect to Gowers norm of an appropriate order. This then
allows us to bound the number of codewords, using known decomposition theorems
which approximate any bounded function in terms of a finite number of
low-degree non-classical polynomials, upto a small error in the Gowers norm
Gaussian width bounds with applications to arithmetic progressions in random settings
Motivated by problems on random differences in Szemer\'{e}di's theorem and on
large deviations for arithmetic progressions in random sets, we prove upper
bounds on the Gaussian width of point sets that are formed by the image of the
-dimensional Boolean hypercube under a mapping
, where each coordinate is a constant-degree
multilinear polynomial with 0-1 coefficients. We show the following
applications of our bounds. Let be the random
subset of containing each element independently with
probability .
A set is -intersective if
any dense subset of contains a proper -term
arithmetic progression with common difference in . Our main result implies
that is -intersective with probability provided for . This gives a polynomial improvement for all
of a previous bound due to Frantzikinakis, Lesigne and Wierdl, and
reproves more directly the same improvement shown recently by the authors and
Dvir.
Let be the number of -term arithmetic progressions in
and consider the large deviation rate
. We give quadratic
improvements of the best-known range of for which a highly precise estimate
of due to Bhattacharya, Ganguly, Shao and Zhao is valid for
all odd .
We also discuss connections with error correcting codes (locally decodable
codes) and the Banach-space notion of type for injective tensor products of
-spaces.Comment: 18 pages, some typos fixe
Outlaw distributions and locally decodable codes
Locally decodable codes (LDCs) are error correcting codes that allow for
decoding of a single message bit using a small number of queries to a corrupted
encoding. Despite decades of study, the optimal trade-off between query
complexity and codeword length is far from understood. In this work, we give a
new characterization of LDCs using distributions over Boolean functions whose
expectation is hard to approximate (in~~norm) with a small number of
samples. We coin the term `outlaw distributions' for such distributions since
they `defy' the Law of Large Numbers. We show that the existence of outlaw
distributions over sufficiently `smooth' functions implies the existence of
constant query LDCs and vice versa. We give several candidates for outlaw
distributions over smooth functions coming from finite field incidence
geometry, additive combinatorics and from hypergraph (non)expanders.
We also prove a useful lemma showing that (smooth) LDCs which are only
required to work on average over a random message and a random message index
can be turned into true LDCs at the cost of only constant factors in the
parameters.Comment: A preliminary version of this paper appeared in the proceedings of
ITCS 201
On the number of rich lines in truly high dimensional sets
We prove a new upper bound on the number of -rich lines (lines with at
least points) in a `truly' -dimensional configuration of points
. More formally, we show that, if the number
of -rich lines is significantly larger than then there must exist
a large subset of the points contained in a hyperplane. We conjecture that the
factor can be replaced with a tight . If true, this would
generalize the classic Szemer\'edi-Trotter theorem which gives a bound of
on the number of -rich lines in a planar configuration. This
conjecture was shown to hold in in the seminal work of Guth and
Katz \cite{GK10} and was also recently proved over (under some
additional restrictions) \cite{SS14}. For the special case of arithmetic
progressions ( collinear points that are evenly distanced) we give a bound
that is tight up to low order terms, showing that a -dimensional grid
achieves the largest number of -term progressions.
The main ingredient in the proof is a new method to find a low degree
polynomial that vanishes on many of the rich lines. Unlike previous
applications of the polynomial method, we do not find this polynomial by
interpolation. The starting observation is that the degree Veronese
embedding takes -collinear points to linearly dependent images. Hence,
each collinear -tuple of points, gives us a dependent -tuple of images.
We then use the design-matrix method of \cite{BDWY12} to convert these 'local'
linear dependencies into a global one, showing that all the images lie in a
hyperplane. This then translates into a low degree polynomial vanishing on the
original set
Gaussian width bounds with applications to arithmetic progressions in random settings
Motivated by two problems on arithmetic progressions (APs)—concerning large
deviations for AP counts in random sets and random differences in Szemer´edi’s theorem—
we prove upper bounds on the Gaussian width of the image of the n-dimensional Boolean
hypercube under a mapping ψ : Rn → Rk, where each coordinate is a constant-degree
multilinear polynomial with 0/1 coefficients. We show the following applications of our
bounds. Let [Z/NZ]p be the random subset of Z/NZ containing each element independently
with probability p.
• Let Xk be the number of k-term APs in [Z/NZ]p. We show that a precise estimate
on the large deviation rate log Pr[Xk ≥ (1 + δ)EXk] due to Bhattacharya, Ganguly,
Shao and Zhao is valid if
Lower Bounds for 2-Query LCCs over Large Alphabet
A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary coordinate of a corrupted codeword by querying only a few coordinates. We show that any 2-query locally correctable code C:{0,1}^k -> Sigma^n that can correct a constant fraction of corrupted symbols must have n >= exp(k/log|Sigma|) under the assumption that the LCC is zero-error. We say that an LCC is zero-error if there exists a non-adaptive corrector algorithm that succeeds with probability 1 when the input is an uncorrupted codeword. All known constructions of LCCs are zero-error.
Our result is tight upto constant factors in the exponent. The only previous lower bound on the length of 2-query LCCs over large alphabet was Omega((k/log|Sigma|)^2) due to Katz and Trevisan (STOC 2000). Our bound implies that zero-error LCCs cannot yield 2-server private information retrieval (PIR) schemes with sub-polynomial communication. Since there exists a 2-server PIR scheme with sub-polynomial communication (STOC 2015) based on a zero-error 2-query locally decodable code (LDC), we also obtain a separation between LDCs and LCCs over large alphabet
Generalized GM-MDS: Polynomial Codes are Higher Order MDS
The GM-MDS theorem, conjectured by Dau-Song-Dong-Yuen and proved by Lovett
and Yildiz-Hassibi, shows that the generator matrices of Reed-Solomon codes can
attain every possible configuration of zeros for an MDS code. The recently
emerging theory of higher order MDS codes has connected the GM-MDS theorem to
other important properties of Reed-Solomon codes, including showing that
Reed-Solomon codes can achieve list decoding capacity, even over fields of size
linear in the message length.
A few works have extended the GM-MDS theorem to other families of codes,
including Gabidulin and skew polynomial codes. In this paper, we generalize all
these previous results by showing that the GM-MDS theorem applies to any
\emph{polynomial code}, i.e., a code where the columns of the generator matrix
are obtained by evaluating linearly independent polynomials at different
points. We also show that the GM-MDS theorem applies to dual codes of such
polynomial codes, which is non-trivial since the dual of a polynomial code may
not be a polynomial code. More generally, we show that GM-MDS theorem also
holds for algebraic codes (and their duals) where columns of the generator
matrix are chosen to be points on some irreducible variety which is not
contained in a hyperplane through the origin. Our generalization has
applications to constructing capacity-achieving list-decodable codes as shown
in a follow-up work by Brakensiek-Dhar-Gopi-Zhang, where it is proved that
randomly punctured algebraic-geometric (AG) codes achieve list-decoding
capacity over constant-sized fields.Comment: 34 page
AG codes achieve list decoding capacity over contant-sized fields
The recently-emerging field of higher order MDS codes has sought to unify a
number of concepts in coding theory. Such areas captured by higher order MDS
codes include maximally recoverable (MR) tensor codes, codes with optimal
list-decoding guarantees, and codes with constrained generator matrices (as in
the GM-MDS theorem).
By proving these equivalences, Brakensiek-Gopi-Makam showed the existence of
optimally list-decodable Reed-Solomon codes over exponential sized fields.
Building on this, recent breakthroughs by Guo-Zhang and Alrabiah-Guruswami-Li
have shown that randomly punctured Reed-Solomon codes achieve list-decoding
capacity (which is a relaxation of optimal list-decodability) over linear size
fields. We extend these works by developing a formal theory of relaxed higher
order MDS codes. In particular, we show that there are two inequivalent
relaxations which we call lower and upper relaxations. The lower relaxation is
equivalent to relaxed optimal list-decodable codes and the upper relaxation is
equivalent to relaxed MR tensor codes with a single parity check per column.
We then generalize the techniques of GZ and AGL to show that both these
relaxations can be constructed over constant size fields by randomly puncturing
suitable algebraic-geometric codes. For this, we crucially use the generalized
GM-MDS theorem for polynomial codes recently proved by Brakensiek-Dhar-Gopi. We
obtain the following corollaries from our main result. First, randomly
punctured AG codes of rate achieve list-decoding capacity with list size
and field size . Prior to this work, AG
codes were not even known to achieve list-decoding capacity. Second, by
randomly puncturing AG codes, we can construct relaxed MR tensor codes with a
single parity check per column over constant-sized fields, whereas
(non-relaxed) MR tensor codes require exponential field size.Comment: 38 page
Spanoids - An Abstraction of Spanning Structures, and a Barrier for LCCs
We introduce a simple logical inference structure we call a spanoid (generalizing the notion of a matroid), which captures well-studied problems in several areas. These include combinatorial geometry (point-line incidences), algebra (arrangements of hypersurfaces and ideals), statistical physics (bootstrap percolation), network theory (gossip / infection processes) and coding theory. We initiate a thorough investigation of spanoids, from computational and structural viewpoints, focusing on parameters relevant to the applications areas above and, in particular, to questions regarding Locally Correctable Codes (LCCs).
One central parameter we study is the rank of a spanoid, extending the rank of a matroid and related to the dimension of codes. This leads to one main application of our work, establishing the first known barrier to improving the nearly 20-year old bound of Katz-Trevisan (KT) on the dimension of LCCs. On the one hand, we prove that the KT bound (and its more recent refinements) holds for the much more general setting of spanoid rank. On the other hand we show that there exist (random) spanoids whose rank matches these bounds. Thus, to significantly improve the known bounds one must step out of the spanoid framework.
Another parameter we explore is the functional rank of a spanoid, which captures the possibility of turning a given spanoid into an actual code. The question of the relationship between rank and functional rank is one of the main questions we raise as it may reveal new avenues for constructing new LCCs (perhaps even matching the KT bound). As a first step, we develop an entropy relaxation of functional rank to create a small constant gap and amplify it by tensoring to construct a spanoid whose functional rank is smaller than rank by a polynomial factor. This is evidence that the entropy method we develop can prove polynomially better bounds than KT-type methods on the dimension of LCCs.
To facilitate the above results we also develop some basic structural results on spanoids including an equivalent formulation of spanoids as set systems and properties of spanoid products. We feel that given these initial findings and their motivations, the abstract study of spanoids merits further investigation. We leave plenty of concrete open problems and directions