
Lower Bounds for 2-Query LCCs over Large
Alphabet∗

Arnab Bhattacharyya1, Sivakanth Gopi2, and Avishay Tal3

1 Department of Computer Science and Automation, Indian Institute of Science
Bangalore, Bangalore, India
arnabb@csa.iisc.ernet.in

2 Department of Computer Science, Princeton University, Princeton, NJ, USA
sgopi@cs.princeton.edu

3 School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA
avishay.tal@gmail.com

Abstract
A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary
coordinate of a corrupted codeword by querying only a few coordinates. We show that any 2-
query locally correctable code C : {0, 1}k → Σn that can correct a constant fraction of corrupted
symbols must have n > exp(k/ log |Σ|) under the assumption that the LCC is zero-error. We say
that an LCC is zero-error if there exists a non-adaptive corrector algorithm that succeeds with
probability 1 when the input is an uncorrupted codeword. All known constructions of LCCs are
zero-error.

Our result is tight upto constant factors in the exponent. The only previous lower bound on
the length of 2-query LCCs over large alphabet was Ω((k/ log |Σ|)2) due to Katz and Trevisan
(STOC 2000). Our bound implies that zero-error LCCs cannot yield 2-server private information
retrieval (PIR) schemes with sub-polynomial communication. Since there exists a 2-server PIR
scheme with sub-polynomial communication (STOC 2015) based on a zero-error 2-query locally
decodable code (LDC), we also obtain a separation between LDCs and LCCs over large alphabet.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases Locally correctable code, Private information retrieval, Szemerédi regu-
larity lemma

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.30

1 Introduction

In this work, we study error-correcting codes that are equipped with local algorithms. A
code is called a locally correctable code (LCC) if there is a randomized algorithm which, given
an index i and a received word w close to a codeword c in Hamming distance, outputs ci by
querying only a few positions of w. The maximum number of positions of w queried by the
local correction algorithm is called the query complexity of the LCC.

The main problem studied regarding LCCs is the tradeoff between their query complexity
and length. Intuitively, these two parameters enforce contrasting properties. Small query

∗ AB was partially supported by a DST Ramanujan Fellowship. SG was supported by NSF grants
CCF-1523816, CCF-1217416 and part of this research was done while the author was at Microsoft
Research, Redmond. AT was supported by the Simons Collaboration on Algorithms and Geometry, and
by the National Science Foundation grant No. CCF-1412958.

© Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 30; pp. 30:1–30:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Lower Bounds for 2-Query LCCs over Large Alphabet

complexity means that individual codeword symbols carry substantial information, while
short length along with resilience to corruption means that information is spread out among
the codeword symbols. In this paper, we explore one end of the spectrum of tradeoffs by
studying 2-query locally correctable codes.

Also called “self-correction”, the idea of local correction originated in works by Lipton [22]
and by Blum and Kannan [7] on program checkers. In particular, [22, 3] used the fact that
the Reed-Muller code is locally correctable to show average-case hardness of the Permanent
problem. LCCs are closely related to locally decodable codes (LDCs), where the goal is to
recover a symbol of the underlying message when given a corrupted codeword using a small
number of queries [18]. LDCs are weaker than LCCs, in the sense that any LCC can be
converted into an LDC while preserving relevant parameters (see Appendix A for a formal
statement and proof). LDCs and LCCs have found applications in derandomization and
hardness results [25, 15, 19]. See [29] for a detailed survey on LDCs and LCCs, as of 2010.
In more recent years, the analysis of LDCs and LCCs has led to a greater understanding of
basic problems in incidence geometry, the construction of design matrices and the theory of
matrix scaling, e.g. [2, 14, 13].

One particularly important feature of LDCs is their tight connection to information-
theoretic private information retrieval (PIR) schemes. PIR is motivated by the scenario
where a user wants to retrieve an item from a database without revealing to the database
owner what item he is asking for. Formally, the user wants to retrieve xi from a k-bit
database x = (x1, . . . , xk). A trivial solution is for the database owner to transmit the entire
database no matter what query the user has in mind, but this has a huge communication
overhead. Chor et al. [8] observed that while with one database, nothing better than the
trivial solution is possible, there are non-trivial PIR schemes if multiple servers can hold
replicas of the database. It turns out that t-server PIR schemes with low communication are
roughly equivalent to short t-query LDCs. More precisely, a 2-server PIR scheme for k bits
of data with s bits of communication translates to a 2-query LDC C : {0, 1}k → Σ2s where
Σ = {0, 1}s. Note that in this translation, |Σ| equals the length of the code.

Let C : {0, 1}k → Σn be a 2-query LDC/LCC such that the corrector algorithm can
tolerate corruptions at δn positions. Katz and Trevisan in their seminal work [18] showed
that for 2-query LDCs, n > Ω(δ(k/ log |Σ|)2). (Since LDCs are weaker than LCCs, a lower
bound on the length of LDCs also implies a lower bound on the length of LCCs). More than
15 years later, the Katz-Trevisan bound is still the best known for large alphabet Σ. However
for small alphabet size, the dependence on k is shown to be exponential. Goldreich et al. [16]
showed that n > exp(δk/|Σ|) for linear 2-query LDCs, while Kerenedis and de Wolf [20] (with
further improvements in [28]) showed using quantum techniques that n > exp(δk/|Σ|2) for
arbitrary 2-query LDCs. But these lower bounds become trivial when |Σ| = Ω(n). However,
the case of large alphabet |Σ| ≈ n is quite important to understand as this is the regime
through which we would be able to prove lower bounds on the communication complexity of
PIR schemes.

Given the lack of progress on LDC and PIR lower bounds, it is a natural question to
ask whether strong lower bounds are possible for LCCs. In this work, we demonstrate an
exponential improvement on the Katz-Trevisan bound for zero-error LCCs. We define a
zero-error LCC to be an LCC for which the corrector algorithm is non-adaptive and succeeds
with probability 1 when the input is an uncorrupted codeword. All current LCC constructions
are zero-error, and in fact, any linear LCC can be made zero-error. We state our main
theorem below informally, see Theorem 5 for a formal statement.

A. Bhattacharyya, S. Gopi, and A. Tal 30:3

I Theorem 1 (Informal). If C : {0, 1}k → Σn is a zero-error 2-query LCC that can correct
δn corruptions, then n > exp(poly(δ) · k/ log |Σ|).1

1.1 Discussion of Main Result
The lower bound in Theorem 1 is tight in its dependence on k and Σ. Specifically, Yekhanin in
the appendix of [4] gives the following elegant construction of a 2-query LCC C : {0, 1}k → Σn
with n = 2O(k/ log |Σ|) for any δ 6 1/6,Σ and k. Assume |Σ| = 2b and b | k for simplicity. Write
x ∈ {0, 1}k as (xi,j)i∈[b],j∈[k/b]. Then, for any a ∈ [2k/b], let (C(x))a = (H(xi,1, . . . , xi,k/b)a :
i ∈ [b]) ∈ {0, 1}b where H is the classical Hadamard encoding H : {0, 1}r → {0, 1}2r defined
as H(y) = (

∑r
i=1 yiξi (mod 2) : ξ1, . . . , ξr ∈ {0, 1}). It is well-known that H is a 2-query

LCC, and from this, it is easy to check that C is also. The parameters follow directly from the
construction. A simple modification of this construction gives (2O(δk/ log |Σ|)/δ)-length 2-query
LCCs that tolerate δn corruptions. The proof of Theorem 1 shows n > exp(δ4k/ log |Σ|)
which is therefore tight upto poly(δ) factors in the exponent.

The 2-query LCC described above is a linear code over F2b . For linear codes C ⊆ Fnq (i.e.,
C is a linear subspace of Fnq), where q = pr for a prime p, [4] showed that n > exp(δk/r) =
exp(δk/ logp |Σ|) where k = log |C| is the message length and |Σ| = pr. Thus, in terms of
dependence on k and |Σ|, we extend the result of [4] from linear codes to all zero-error LCCs.
Moreover, this work is much more elementary and simple than [4] which uses non-trivial
results from additive combinatorics.

It is important to note that Theorem 1 cannot be true for 2-query LDCs. Such a result
would contradict the construction in [12] of a zero-error 2-query LDC with logn = log |Σ| =
exp(
√

log k) = ko(1) and δ = Ω(1). So, our result can be interpreted as giving a separation
between zero-error LCCs and LDCs over large alphabet. We conjecture that the zero-error
restriction in the theorem can be removed, which if true, would yield the first separation
between general LCCs and LDCs. It is still quite unclear what the correct lower bound
for 2-query LDCs should look like. As mentioned above, Katz and Trevisan [18] show
that n > Ω(δk2/ log2 |Σ|). And the quantum arguments of [20, 28] give the lower bound
n > exp(δk/|Σ|2) which becomes trivial when |Σ| = Ω(n).

1.2 Proof Overview
Like most prior work on 2-query LDCs and LCCs, we view the query distribution of the local
correcting algorithm as a graph. However, these previous works did not exploit the structure
of the graph much beyond its size and degree, whereas our bound is due to a detailed use of
the graph structure.

Let C : {0, 1}k → Σn be a 2-query LCC. So, for every i ∈ [n], there is a corrector
algorithm Ai that when given access to z ∈ Σn with Hamming distance at most δn from
some codeword y, returns yi with probability at least 2/3. Assuming non-adaptivity, the
algorithm Ai chooses its queries from a distribution on [n]2. Katz and Trevisan [18] show
how to extract a matching Mi of Ω(δn) disjoint edges on n vertices such that for any edge
e = (j, k) in Mi,

Pr
y

[Ai(y) = yi | A queries y at positions j and k] > 1
2 + ε

1 An earlier version [5] of this paper showed that n > exp(cδ · k/ log |Σ|) where cδ has tower type
dependence on δ due to the use of the Szemerédi regularity lemma.

APPROX/RANDOM’17

30:4 Lower Bounds for 2-Query LCCs over Large Alphabet

for some constant ε > 0, where the probability is over a uniformly random codeword y ∈ C.
For zero-error LCCs, the situation is simpler in that essentially, for every codeword y and
edge e ∈Mi, Ai(y) returns yi when it queries the elements of e. This is not exactly correct
but let us suppose it’s true for the rest of this section.

Let G be the union of M1, . . . ,Mn. So, for every edge (j, k) in G, there is an i such that
(j, k) ∈Mi. Suppose our goal is to guess an unknown codeword c given the values of a small
subset of coordinates of c. We assign labels in Σ to vertices of G corresponding to the subset
of coordinates of c that we know already. Now, imagine a propagation process where we
deduce the labels of unlabeled vertices by using the corrector algorithms. For example, if
(j, k) ∈Mi, j and k are labeled but i is not, we can use Ai to deduce the label at vertex i.
Similarly, if (x, y) ∈Mu and (u, v) ∈Mw, and x, y, v are labeled but u and w are not, we can
run Au to deduce the label of u and then Aw to deduce the label of w. The set of labels we
infer will be the values of c at the corresponding coordinates. The goal of our analysis is to
show that there is a set S of Oδ(logn)2 vertices such that if the labels of S are known, then
the propagation process can determine the labels of all n vertices. This immediately implies
that the total number of codewords, 2k, is at most |Σ||S| and therefore, k = Oδ(logn · log |Σ|).
Instead, Katz and Trevisan [18] show that if you know the labels of

√
n uniformly random

coordinates, then you can recover the labels of most of the coordinates which leads to the
bound k = Oδ(

√
n · log |Σ|). Intuitively, their lower bound is just one step of the propagation

process.
The propagation process is perhaps more naturally described on a (directed) 3-uniform

hypergraph where there is an edge (i, j, k) if (j, k) ∈Mi. It “captures” i if (i, j, k) is an edge
and j, k are already captured. Coja-Oghlan et al. [9] study exactly this process on random
undirected 3-uniform hypergraphs in the context of constraint satisfaction problem solvers.
Unfortunately, their techniques are specialized to random hypergraphs. The propagation
process is also related to hypergraph peeling [23, 24], but again, most theoretical work is
limited to random hypergraphs.

To motivate our approach, suppose M1, . . . ,Mn are each a perfect matching. For a set
S ⊆ [n], let R(S) denote the set of vertices to which we can propagate starting from S. If
R(S) = [n], we are done. Otherwise, we show that we can double |R(S)| by adding one
more vertex to S. Note that for any i /∈ R(S), no edge in Mi can lie entirely inside R(S),
for then, i would also have been reached. So, each vertex in R(S) must be incident to one
edge in Mi for every i /∈ R(S). This makes the total number of edges between R(S) and
[n] \R(S) belonging to Mi for some i 6∈ R(S) equal to |R(S)| · (n− |R(S)|). By averaging,
there must be j /∈ R(S) that is incident to at least |R(S)| edges, each belonging to some
Mi for i /∈ R(S). Moreover, all these |R(S)| edges must belong to matchings of different
vertices. Hence, adding j to S doubles the size of R(S). Hence, for some S of size O(logn),
R(S) = [n].

In the above special case (where all the matchings were perfect), we used the fact that
the size of the cut between R(S) and the rest of the graph is large and that many of these
edges belong to Mi for i 6∈ R(S). We observe that for any graph obtained from an LCC
as above, this situation exists whenever R(S) is not too large already and the minimum
degree of every vertex in the graph is large (say, poly(δ) · n). This is because each vertex
in R(S) will be incident to many edges in matchings Mi for i /∈ R(S) (using the minimum
degree requirement and that |R(S)| is small) and such edges cannot have both endpoints
inside R(S) (as then i ∈ R(S)). So, indeed, there will be many edges with labels not in R(S)

2 Oδ(·) means that the involved constant can depend on δ.

A. Bhattacharyya, S. Gopi, and A. Tal 30:5

crossing the cut, and averaging will yield a vertex whose addition to S will make R(S) grow
by a multiplicative factor. Therefore, if the minimum degree requirement is met, we can keep
repeating this process until R(S) becomes large, of size poly(δ) · n. Now, in a key lemma
of our proof, we show that for any graph obtained from an LCC as above, we can greedily
find a subset of the vertices V ′ such that the the subgraph induced by the vertices of V ′
and the edges labeled by V ′ has large minimum degree. So, we can repeatedly apply the
above argument to V ′ to find a subset S of size Oδ(logn) such that R(S) contains poly(δ) ·n
vertices.

Recall that our goal is to find a small set S such that R(S) = [n]. So, at this stage,
we would ideally like to continue the argument on V ′′ = [n] \ R(S). The only issue we
can face is that the graph on V ′′ restricted to edges labeled by V ′′ may not have the LCC
structure. Indeed, it could be that most edges labeled by V ′′ are not spanned by vertices in
V ′′. However in this case, there will be a vertex u in V ′′ incident to many V ′′-labeled edges
that have their other endpoints in R(S), so that we can increase R(S) by adding u to S.
Thus, either R(S) may be grown directly or else the rest of the vertices looks approximately
like an LCC, so that we can recurse. Modulo some important technical details, our proof is
now complete3.

The zero-error assumption seems necessary to make the propagation process well-defined.
Otherwise, for each labeled vertex, there is some probability that the label is incorrect for
the codeword in question. But since there may be Ω(logn) = ω(1) steps of propagation, the
error probability may blow up by this factor. So, it seems we need different techniques to
handle correctors that have constant probability of error when the input is a codeword. One
possibility is using information theory to better handle the spread of error4.

2 Zero-error 2-query LCCs

We begin by formally defining zero-error 2-query LCCs.

I Definition 2. Let Σ be some finite alphabet and let C ⊂ Σn be a set of codewords. C
is called a (2, τ)-LCC with zero-error if there exists a randomized algorithm A such that
following is true:
1. A is given oracle access to some z ∈ Σn and an input i ∈ [n]. It outputs a symbol in Σ

after making at most 2 non-adaptive queries to z.
2. If z ∈ Σn is τ -close to some codeword c ∈ C in Hamming distance, then for every i ∈ [n],

Pr[Az(i) = ci] > 2/3.
3. If c ∈ C, then for every i ∈ [n], Pr[Ac(i) = ci] = 1 i.e. if the received word has no errors,

then the local correction algorithm will not make any error.
Note that the above definition differs from the standard notion of non-adaptive 2-query LCCs
only in part (3) above. The choice of 2/3 in part (2) of the definition above is somewhat
arbitrary. We can make it any constant greater than 1/2. More generally, it is only required

3 An earlier version [5] of this paper had a different argument for the main theorem, based on a
“decomposition theorem” proved using the Szeméredi regularity lemma for directed graphs [26, 1]. The
idea was to partition the graph into a constant number of edge expanders. In each such part, the sizes
of cuts are large and so the propagation process can be easily analyzed. The proof given here is simpler
and yields much better dependence on δ. However, because the decomposition theorem for directed
graphs may be of general interest, we have included it in Appendix B of this paper.

4 This approach is taken in [17] to prove an exponential lower bound for smooth 2-query LDCs over
binary alphabet when the decoder has subconstant error probability. Jain’s analysis seems to work only
for binary codes but is similar in spirit to ours.

APPROX/RANDOM’17

30:6 Lower Bounds for 2-Query LCCs over Large Alphabet

that for every σ 6= ci,Pr[Az(i) = ci] > Pr[Az(i) = σ] + ε for some ε > 0, i.e., ci should win
the plurality vote among all symbols by a constant margin.

We next show that the corrector for any zero-error LCC can be brought into a “normal"
form. A similar statement is known for general LDCs and LCCs [18, 29] but we need to be a
bit more careful because we want to preserve the zero-error property. Note that the proof
overview in Section 1.2 assumed that the set T1 below is empty.

I Lemma 3. Let C ⊂ Σn be a (2, τ)-LCC with zero error. Then, there exists a partition of
[n] = T1 ∪ T2 such that:
1. For every i ∈ T1, there exists a distribution Di over [n]∪{φ} and algorithms Rij for every

j ∈ [n] ∪ {φ} such that for every codeword c ∈ C,

Pr
j∼Di

[
Rij(cj) = ci

]
>

2
3 .

5

Moreover the distribution Di is smooth over [n] i.e. for every j ∈ [n], PrDi
[j] 6 4

τn .
2. For every i ∈ T2, there exists a matchingMi of edges in [n] \ {i} of size |Mi| > τ

4n such
that: For every c ∈ C, ci can be recovered from (cj , ck) for any (j, k) ∈Mi i.e. there exists
algorithms Rij,k for every edge (j, k) ∈Mi such that for every c ∈ C,

Rij,k(cj , ck) = ci.

Proof. Fix ε = τ/4. Let A be the local corrector algorithm for C and let Qi be the
distribution over 2-tuples of [n] corresponding to the queries A(i) makes to correct coordinate
i.6 Let supp(Qi) be the set of edges in the support of Qi. We have two cases:
Case 1: supp(Qi) contains a matching of size εn.

In this case, we include i ∈ T2 and defineMi to be a matching of size εn in supp(Qi).
Let Rij,k(zj , zk) be the output7 of Az(i) when it samples (j, k) from the distribution Qi.
So we have for every σ ∈ Σ,

Pr
(j,k)∼Qi

[Rij,k(zj , zk) = σ] = Pr[Az(i) = σ].

Now since our LCC is zero-error, for every (j, k) ∈ supp(Qi), we have Rij,k(cj , ck) = ci.
This takes care of part (2).

Case 2: supp(Qi) doesn’t contain a matching of size εn.
In this case we include i ∈ T1. Since supp(Qi) doesn’t contain a matching of size εn,
there exists a vertex cover of size at most 2εn, say Vi. Also define Bi ⊂ [n] to be the set
of vertices which are queried with high probability by Az(i) i.e.

Bi =
{
j : Pr[Az(i) queries j] > 1

εn

}
.

Clearly |Bi| 6 2εn because Az(i) makes at most two queries. We now define a new
one-query corrector for i, Ãz(i) as follows: simulate Az(i), but whenever Az(i) queries
z at a coordinate in Vi ∪Bi, Ãz(i) doesn’t query that coordinate and assumes that the
queried coordinate is 0 (or some fixed symbol in Σ). Note that Ãz(i) makes at most one
query to z since Vi is a vertex cover for the support of Qi. Also Ãc(i) behaves exactly

6 Wlog, we can assume A(i) always queries two coordinates.
7 Note that Rij,k might use additional randomness.

A. Bhattacharyya, S. Gopi, and A. Tal 30:7

like Ac′(i) where c′ is the word formed by zeroing out the Vi ∪Bi coordinates of c. Since
|Vi ∪Bi| 6 4εn 6 τn, we have

Pr[Ãc(i) = ci] = Pr[Ac
′
(i) = ci] >

2
3 .

Now define the distribution Di over [n] ∪ {φ} as:

Pr
Di

[j] = Pr[Ãz(i) queries j]

for j ∈ [n] and

Pr
Di

[φ] = Pr[Ãz(i) doesn’t make any query].

Since we never query elements of Bi, we have the required smoothness i.e. PrDi [j] 6 1/(εn)
for all j ∈ [n]. Also define Rij(zj) to be the output (can be randomized) of Ãz(i) when it
queries j ∈ [n] and Riφ(cφ) to be the output (can be randomized) of Ãz(i) when it doesn’t
make any query where cφ is an empty input defined for ease of notation. By definition,
we have

Pr
j∼Di

[Rij(cj) = ci] = Pr[Ãc(i) = ci] >
2
3 .

This proves part (1). J

3 Proof of lower bound

3.1 An information theoretic lemma
The proof of Theorem 1 works by showing that there is randomized algorithm which can
guess an unknown codeword c ∈ C ⊂ Σn with high probability by making a small number
of queries. From this we would like to show that |C| cannot be large. We will apply Fano’s
inequality which is a basic information theoretic inequality to achieve this. We will assume
familiarity with basic notions in information theory; we refer the reader to [10] for precise
definitions and the proofs of the facts we use. Given random variables X,Y, Z, let H(X)
be the entropy of X which is the amount of information contained in X. H(X|Y) is the
conditional entropy of X given Y which is the amount of information left in X if we know
Y . The mutual information I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) is the amount
of common information between X,Y . If X,Y are independent, then I(X;Y) = 0. The
conditional mutual information I(X;Y |Z) is the mutual information between X,Y given Z.
We have the following chain rule for mutual information:

I(X;Y Z) = I(X;Z) + I(X;Y |Z).

We also need the following basic inequality:

I(X;Y |Z) 6 H(X|Z) 6 log |X |

where X is the support of the random variable X. We will now state Fano’s inequality which
says that if we can predict X very well from Y i.e. there is a predictor X̂(Y) such that
Pr[X̂(Y) 6= X] 6 pe where pe is small, then H(X|Y) should be small as well (see [10] for a
proof). More precisely,

H(X|Y) 6 h(pe) + pe log(|X | − 1) (Fano’s inequality)

where h(x) = −x log x− (1−x) log(1−x) is the binary entropy function and X is the support
of random variable X.

APPROX/RANDOM’17

30:8 Lower Bounds for 2-Query LCCs over Large Alphabet

I Lemma 4. Suppose there exists a randomized algorithm P such that for every c ∈ C ⊂ Σn,
given oracle access to c, P makes at most t queries to c and outputs c with probability > 1/2,
then log |C| 6 O(t log |Σ|).

Proof. Let X be a random variable which is uniformly distributed over C. Let R be the
random variable corresponding to the random string of the algorithm P and let S(R) be the
set of coordinates queried by P when the random string is R. We can guess the value of
X with probability > 1/2 given XS(R), R where XS(R) is the restriction of X to S(R). By
Fano’s inequality,

H(X | XS(R), R) 6 h(1/2) + 1
2 · log(|C| − 1) 6 1 + 1

2 log |C|.

We can bound the mutual information between X and XS(R),R as follows:

I(X;XS(R), R) = I(X;R) + I(X;XS(R)|R) (Chain rule for mutual information.)
6 0 +H(XS(R)|R) (Since X and R are independent.)
6 t log |Σ|.

But we also have

I(X;XS(R), R) = H(X)−H(X|XS(R), R) > log |C| − 1
2 log |C| − 1 >

1
2 log |C| − 1.

Combining the upper and lower bound for I(X;XS(R), R), we get the required bound. J

3.2 Proof of Theorem 1
The following is a restatement of Theorem 1.

I Theorem 5. Let C ⊂ Σn be a (2, τ)-LCC which is zero-error, then

|C| 6 exp
(
O(1

τ4 · logn · log |Σ|)
)
.

Proof. We will construct a randomized algorithm P such that for every c ∈ C, given oracle
access to c, P makes at most O(1

τ4 · logn) queries to c and outputs c with probability
> 1− 1/n. By Lemma 4, we get the required bound.

Let [n] = T1 ∪ T2 be partition of coordinates given by Lemma 3.

I Claim 6. Algorithm P can learn c|T1 with probability > 1− 1/n by querying a uniformly
random (sampled with repetitions) subset S of size r = O(1

τ2 · logn).

Proof. Let S = {Z1, · · · , Zr} where each Zi is a uniformly random element of [n]. By
Lemma 3, for every u ∈ T1, we have a smooth distribution Du over [n] and algorithms Ruv
for every v ∈ [n]. Let’s fix u ∈ T1 and let pv = PrDu [v]. By smoothness, pv 6 4

τn for every
v ∈ [n]. The algorithm P estimates cu as follows: Define the weight of σ to be

Wσ = pφ ·Pr[Ruφ = σ] + 1
r

r∑
i=1

npZi ·Pr[RuZi
(cZi) = σ]

and output the symbol with the maximum weight. We will show that

Pr[P guesses cu incorrectly] 6 1
n2 .

A. Bhattacharyya, S. Gopi, and A. Tal 30:9

For σ ∈ Σ and v ∈ [n] ∪ {φ}, let fσv = Pr[Ruv (cv) = σ]. The weight of σ is given by

Wσ = pφf
σ
φ + 1

r

r∑
i=1

npZi
fσZi

.

We can calculate the expected value of the weight as

E[Wσ] = pφf
σ
φ + E[npZ1f

σ
Z1

]

= pφ Pr[Ruφ(cφ) = σ] +
∑
v∈[n]

pv Pr[Ruv (cv) = σ] = Pr
v∼Du

[Ruv (cv) = σ].

Therefore Wσ is an unbiased estimator for Prv∼Du
[Ruv (cv) = σ]. Also pZi

6 4
τn and fσZi

6 1,
so npZi

fσZi
6 4

τ . Applying Hoeffding’s inequality,

Pr
[
|Wσ −E[Wσ]| > 1

20

]
6 exp

(
−Ω(rτ2)

)
6 1/2n2

when r � 1
τ2 logn. By Lemma 3,

E[Wcu] = Pr
v∼Du

[Ruv (cv) = cu] > 2
3 .

Therefore, Pr[Wcu 6 2
3 −

1
20] 6 1/2n2. Now we will show that no other symbol can have

higher weight than Wcu
except with probability 1

2n2 . For this let us look at∑
σ∈Σ

Wσ =
∑
σ

pφf
σ
φ + 1

r

r∑
i=1

npZi

∑
σ

fσZi

= pφ
∑
σ

Pr[Ruφ = σ] + 1
r

r∑
i=1

npZi

∑
σ

Pr[RuZi
(cZi) = σ]

= pφ + 1
r

r∑
i=1

npZi

So E[
∑
σ∈ΣWσ] = pφ + E[npZ1] = 1 and npZi

6 4
τ . Therefore by Hoeffding’s inequality

applied again, we get

Pr
[∣∣∣∣∣∑
σ∈Σ

Wσ − 1

∣∣∣∣∣ > 1
20

]
6 exp

(
−Ω(rτ2)

)
6

1
2n2

when r � 1
τ2 logn. So with probability > 1− 1

n2 , we have Wcu
> 2

3 −
1
20 and

∑
σ∈ΣWσ 6

1 + 1
20 . Therefore with probability > 1− 1

n2 , cu will be the symbol with maximum weight
and the algorithm P will guess cu correctly with probability > 1− 1

n2 . By union bound, we
get that P can guess cu correctly for all u ∈ T1 with probability > 1− 1

n . J

We will now show that after learning c|T1 , P can now learn c|T2 by querying a further
Oτ (logn) coordinates from c and this process will be deterministic i.e. no further randomness
is needed. Define R(S) to be the set of coordinates of c that can be recovered correctly given
c|S . In Claim 6, we have shown that if S is a randomly chosen subset of size Oτ (logn), then
T1 ⊆ R(S) with probability > 1− 1

n . From now on we assume that P has already recovered
coordinates of T1 correctly i.e. T1 ⊆ R(S). If T2 ⊆ R(S) then we are done, the algorithm
P can output the entire c with probability > 1 − 1

n . So we can assume that T2 * R(S).
Our goal is to show that we can add a further O(poly(1/τ) · logn) vertices to S and have
R(S) = V = T1 ∪ T2. We show that this is indeed the case in the next section by proving
the following claim, which completes the proof.

I Claim 7. There exists a set S of size O((1/τ)4 · logn) such that R(S ∪ T1) = V . J

APPROX/RANDOM’17

30:10 Lower Bounds for 2-Query LCCs over Large Alphabet

3.3 Proof of Claim 7
Claim 7 is purely graph theoretical. Let G = (V,E) be the graph with V = [n] = T1 ∪ T2
and E = ∪i∈T2Mi whereMi are partial matchings of size at least (τ/4)n given by Lemma 3.
Let δ := τ/4. We will label each edge in E with a label in T2 indicating which matching it
belongs to. We can have parallel edges in E, but they will have different labels since they
belong to different matchings. Recall that R(S) is the set of coordinates of c that can be
inferred from c|S . Lemma 3 implies the following closure property for R(S): if (i, j) ∈Mk

and i, j ∈ R(S) then k ∈ R(S). Next, we define R(S) formally based on the graph G using
this closure property.

I Definition 8. Let G = (V,E) as above. Let S ⊆ V . We define the set RG(S) ⊆ V to be
the smallest set of vertices such that:
1. S ⊆ RG(S)
2. For all i, j ∈ RG(S) and k ∈ [n], if (i, j) ∈Mk, then k ∈ RG(S). (In words, if there exists

an edge (i, j) in the graph G labeled with k and both i and j are in RG(S), then so is k.)

(When the context is clear, we will use R(S) instead of RG(S).) Our goal is to show
that in any graph G as above, there exists a set S ⊆ V of size poly(1/δ) · log(n) such that
RG(S ∪ T1) = V . As a first step, we get rid of the set T1, by showing that proving the claim
in the case T1 = ∅ implies Claim 7 for any other set. To see that observe that if we take G′ to
be the union of G with a collection of partial matching {Mj}j∈T1 , then RG′(S) ⊆ RG(S∪T1)
for any set S ⊆ V . Thus, it suffices to introduce dummy matchings {Mj}j∈T1 for eachMj

of size δn, and prove that there exists a set S of size poly(1/δ) · log(n) such that RG′(S) = V .

I Claim 9 (Claim 7, case T1 = ∅, restated). Let G = (V,E) be a graph with V = [n] and
E =M1 ∪ · · · ∪Mn where each Mi is a partial matching of size at least δn. Then, there
exists a subset S ⊆ V of size O((1/δ)4 · logn) such that RG(S) = V .

From here henceforth we assume (without loss of generality) that T1 = ∅ and T2 = [n],
and prove Claim 9. The following lemma tells us that we can find a subgraph G′ of G such
that each vertex in G′ has high degree. Note that the lemma finds a subgraph restricted to a
set of vertices V ′, and also restricted to the set of edges labeled with V ′.

We shall use this lemma inductively. During induction, we will remove some edges from
the matchings. Thus, instead of asserting that all matchings are of size at least δ|V |, we
assume that all but 0.1δ|V | of the matchings have at least 0.9δ|V | edges.

I Lemma 10 (Clean-Up Lemma). Let G = (V,E) be a graph with a finite set of vertices V
and E =

⋃
i∈V Mi, where each Mi is a partial matching on V . Assume all but 0.1δ|V | of

the matchingsMi have size at least 0.9δ|V |. Then, there exists a subset V ′ ⊆ V of size at
least δ · |V | so that the graph G′ = (V ′, E′) where E′ =

⋃
i∈V ′Mi ∩ (V ′ × V ′) has minimal

degree at least (δ2/4) · |V |.

Proof. We find the set V ′ greedily. Let δ′ := δ2/4. Initialize V ′ = V . If the minimum degree
in the remaining graph on V ′ is at least δ′ · |V | then we stop. Otherwise, remove the vertex
i ∈ V ′ with minimal degree, and remove all edges labeled i. We repeat this process until no
vertices of degree smaller than δ′ · |V | exist.

If the process stopped when |V ′| > δ|V | then we are done. We are left to show that the
process cannot proceed past this point. Let’s assume by contradiction that we can continue
the process after this point. As we decrease the size of V ′ by one in each iteration, we must
reach at a certain point of the process to a set of vertices V ′ = V ∗ of size exactly δ|V |.

A. Bhattacharyya, S. Gopi, and A. Tal 30:11

Denote by

E∗(V ′) :=
⋃
i∈V ∗

Mi ∩ (V ′ × V ′).

Next, we upper and lower bound |E∗(V ∗)| to derive a contradiction.
The upper bound |E∗(V ∗)| 6 |V ∗|·|V ∗|/2 follows since the edges E∗(V ∗) form a collection

of |V ∗| partial matchings on V ∗. To lower bound |E∗(V ∗)| we use the properties of the greedy
process. The initial size of the set E∗(V ′) (when V ′ = V) is at least 0.9δ|V |·(|V ∗|−0.1δ|V |) >
0.92δ2 · |V |2. In every iteration, we remove at most δ′|V | edges from this set of edges.
As there are at most |V | steps, we are left with at least 0.92δ2|V |2 − δ′|V |2 edges, i.e.,
|E∗(V ∗)| > 0.92δ2|V |2 − δ′|V |2. Combining both upper and lower bounds on |E∗(V ∗)| gives

1
2 · δ

2 · |V |2 > |E∗(V ∗)| > (0.92δ2 − δ′) · |V |2 = (0.92δ2 − δ2/4) · |V |2

which yields a contradiction since 1/2 < 0.92 − 1/4. J

I Lemma 11 (Exponentially growing a set of known coordinates). Let G = (V,E) be a graph
with V and E =

⋃
i∈V Mi such that each v ∈ V has degree at least d. Then, there exists a

subset S ⊆ V of size at most O((|V |/d) · log |V |) with |R(S)| > d/2.

Proof. We pick the set S ⊆ V iteratively, picking one element in each step. We start with
S = {v} for some arbitrary v ∈ V .

Assume we picked t elements so far for the set S. If |R(S)| > d/2, then we are done.
Otherwise, by the definition of R(S), for any i ∈ V \R(S), none of the edges in the matching
Mi is inside R(S). We wish to show that there exists an i ∈ V \R(S) with many edges into
R(S) marked with labels outside R(S). Then, we will add i to S, which will reveal a lot of
new coordinates.

For two disjoint sets of vertices A,B ⊆ V we denote by E(A,B) the set of edges
between A and B in the graph G. If A consists of one element, i.e., A = {a} we denote
E(a,B) = E(A,B). Let A = R(S). Let B = V \A. We have∣∣∣∣∣E(A,B) ∩

⋃
i∈B
Mi

∣∣∣∣∣ =
∑
a∈A

∣∣∣∣∣E(a,B) ∩
⋃
i∈B
Mi

∣∣∣∣∣ =
∑
a∈A

∣∣∣∣∣E(a, V \ {a}) ∩
⋃
i∈B
Mi

∣∣∣∣∣ (1)

where the last equality follows since there are no edges labeled i ∈ B between any two vertices
in A. For each a ∈ A there are at least d edges touching a and at most |A| of them appeared
in
⋃
i∈AMi, hence

∣∣E(a, V \ {a}) ∩
⋃
i∈BMi

∣∣ > d − |A| > d/2. Plugging this estimate to
Eq. (1) gives∣∣∣∣∣E(A,B) ∩

⋃
i∈B
Mi

∣∣∣∣∣ > |A| · d/2 .
By averaging there exists a vertex b ∈ B with at least |A| · d

2|V | edges to A labeled with B.
So as long as |A| = |R(S)| 6 d/2 we are extending the set R(S) by at least |R(S)| · d

2|V |
elements, i.e. by a multiplicative factor of (1 + d

2|V |). Hence, after t iterations, either
|R(S)| > (1 + d

2|V |)
t or |R(S)| > d/2. Taking t = O(|V |d · log |V |) gives that after at most t

iterations |R(S)| > d/2. J

I Lemma 12 (Covering 1− δ fraction of the coordinates implies covering all coordinates). Let
G = (V,E) be a graph with V = [n] and E =M1 ∪M2 ∪ . . .∪Mn and eachMi is a partial
matching of size at least δn. Let S ⊆ V . If |R(S)| > (1− δ)n, then R(S) = V .

APPROX/RANDOM’17

30:12 Lower Bounds for 2-Query LCCs over Large Alphabet

Proof. Let v ∈ V . We show that there is an edge inside R(S) marked v. Indeed, there are
at least δn edges labeled v and they form a partial matching. If |V \ R(S)| < δn, one of
these edges do not touch (V \R(S)), i.e., it is an edge connecting two vertices in R(S). J

I Lemma 13 (Two Cases). Let G = (V,E) be a graph with V = [n] and E =M1 ∪M2 ∪
. . . ∪Mn where each Mi is a partial matching of size at least δn. Let S ⊆ V . Assume
|R(S)| 6 (1− δ)n. Then, either
1. There exists an i ∈ V \R(S) such that |R(S ∪ {i})| > |R(S)|+ 0.01 · δ2 · n.
2. In the graph G′ = (V ′, E′) with V ′ = V \ R(S) and E′ =

⋃
i∈V ′Mi ∩ (V ′ × V ′) all but

at most 0.1δ · |V ′| of the matchings have at least 0.9δ · n edges.

Proof. Recall that the labels of edges incident to any vertex i are distinct, since the graph
is a union of partial matchings. Denote by A = R(S) and B = V \R(S). Assume for any
i ∈ B there are at most 0.01δ2 · n edges to A labeled with labels in B. (Otherwise, extend
S by i and get |R(S ∪ {i})| > |R(S)|+ 0.01δ2 · n.) Then, there are at most 0.01δ2 · n · |B|
edges in the cut (A,B) with labels in B. By definition of A = R(S), there are no edges
between A and A labeled with B. Thus, at most 0.01δ2n · |B| edges are missing from the
matchings labeled by B if we restrict to edges between B and B. Hence, at most 0.1δ · |B|
of the matchings may miss more than 0.1δ · n of their edges. J

We are now ready to prove Claim 9.

Proof of Claim 9. Initialize S := ∅. We repeat the following process. While R(S) 6= V ,
check if there exists i ∈ V \R(S) such that |R(S ∪ {i})| > |R(S)|+ 0.01δ2n. We have two
cases:
1. If such an i exists, update S := S ∪ {i}.
2. Else, let G′ = (V ′, E′) where V ′ = V \ R(S) and E′ =

⋃
i∈V ′Mi ∩ (V ′ × V ′). Let

M ′i := Mi ∩ (V ′ × V ′). By Lemma 12, |V ′| > δn. By Lemma 13, all but at most
0.1δ|V ′| of the matchings M ′i for i ∈ V ′ have at least 0.9δn edges. Denote by δ′ =
0.9δn/|V ′| > δ. We apply Lemma 10 on G′ to get a subgraph G′′ = (V ′′, E′′) defined
by a subset V ′′ of size Ω(δ′|V ′|) and E′′ =

⋃
i∈V ′′Mi ∩ (V ′′ × V ′′) with minimal degree

d = Ω((δ′)2 · |V ′|) > Ω(δ2n). We apply Lemma 11 on G′′ to get a set S′′ ⊆ V ′′ of size
O(log |V ′′| · (|V ′′|/d)) = O(logn · (1/δ′)2) with |RG′′(S′′)| > Ω(d) > Ω(δ2n). We update
S := S ∪ S′′.

The number of times we apply case 1 or case 2 is at most O(1/δ2), since each such step
introduces Ω(δ2n) new vertices to R(S). In each application of case 2, at most O((1/δ′)2 ·
logn) 6 O((1/δ2) · logn) elements are added to S. Overall, the size of S at the end of the
process will be

O
(1
δ2

)
+O

(1
δ2 · 1

δ2 · logn
)

= O
(1
δ4 · logn

)
. J

References
1 Noga Alon and Asaf Shapira. Testing subgraphs in directed graphs. Journal of Computer

and System Sciences, 3(69):354–382, 2004.
2 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design

matrices with applications to combinatorial geometry and locally correctable codes. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 519–
528. ACM, 2011.

3 Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 37–48. Springer, 1990.

A. Bhattacharyya, S. Gopi, and A. Tal 30:13

4 Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, and Amir Shpilka. Tight lower bounds
for linear 2-query LCCs over finite fields. Combinatorica, 36(1):1–36, 2016.

5 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for 2-query LCCs over large
alphabet. CoRR, abs/1611.06980v1, 2016. URL: http://arxiv.org/abs/1611.06980v1.

6 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant query affine-invariant
LCCs and LTCs. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.CCC.2016.12.

7 Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995.

8 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998.

9 Amin Coja-Oghlan, Mikael Onsjö, and Osamu Watanabe. Propagation connectivity of
random hypergraphs. The Electronic Journal of Combinatorics, 19(1):P17, 2012.

10 Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley &
Sons, 2012.

11 Richard M. Dudley. Central limit theorems for empirical measures. The Annals of Probab-
ility, pages 899–929, 1978.

12 Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
pages 577–584. ACM, 2015.

13 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for 3-
LCC’s over the reals. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 784–793. ACM, 2014.

14 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices
and a new proof of Kelly’s theorem. In Forum of Mathematics, Sigma, volume 2, page e4.
Cambridge Univ Press, 2014.

15 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.

16 Oded Goldreich, Howard Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds
for linear locally decodable codes and private information retrieval. Computational Com-
plexity, 15(3):263–296, 2006.

17 Rahul Jain. Towards a classical proof of exponential lower bound for 2-probe smooth codes.
arXiv:cs/0607042, 2006.

18 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 80–86. ACM, 2000.

19 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 cir-
cuits. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium
on, pages 198–207. IEEE, 2009.

20 Iordanis Kerenidis and Ronald De Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 106–115. ACM, 2003.

21 Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and
processes. Springer Science & Business Media, 2013.

22 Richard J. Lipton. Efficient checking of computations. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 207–215. Springer, 1990.

23 Michael Mitzenmacher and Justin Thaler. Peeling arguments and double hashing. In Com-
munication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on,
pages 1118–1125. IEEE, 2012.

APPROX/RANDOM’17

http://arxiv.org/abs/1611.06980v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.12

30:14 Lower Bounds for 2-Query LCCs over Large Alphabet

24 Ryuhei Mori and Osamu Watanabe. Peeling algorithm on random hypergraphs with super-
linear number of hyperedges. arXiv preprint arXiv:1506.00718, 2015.

25 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

26 Endre Szemerédi. Regular partitions of graphs. In J. C. Bremond, J. C. Fournier, M. Las
Vergnas, and D. Sotteau, editors, Proc. Colloque Internationaux CNRS 260 – Problèmes
Combinatoires et Théorie des Graphes, pages 399–401, 1978.

27 Amelia Taylor. The regularity method for graphs and digraphs. arXiv preprint
arXiv:1406.6531, 2014.

28 Stephanie Wehner and Ronald De Wolf. Improved lower bounds for locally decodable codes
and private information retrieval. In International Colloquium on Automata, Languages,
and Programming, pages 1424–1436. Springer, 2005.

29 Sergey Yekhanin. Locally decodable codes. In Computer Science – Theory and Applications,
pages 289–290. Springer, 2011.

A LDCs from LCCs

In this section, we will show that q-query LCCs can be converted into q-query LDCs with
only a constant loss in rate and preserving other parameters. Below we define LCCs and
LDCs formally.

I Definition 14 (Locally Correctable Code). Let Σ be some finite alphabet and let C ⊆ Σn

be a set of codewords. C is called a (q, δ, ε)-LCC if there exists a randomized algorithm A
such that following is true:
1. A is given oracle access to some z ∈ Σn and an input i ∈ [n]. It outputs a symbol in Σ

after making at most q queries to z.
2. If z ∈ Σn is δ-close to some codeword c ∈ C in Hamming distance, then for every i ∈ [n],

Pr[Az(i) = ci] > 1
2 + ε.

It is easy to see that LCCs should have large minimum distance.

I Lemma 15 (Lemma 3.2 in [6]). If C ⊆ Σn is a (q, δ, ε)-LCC, then C has minimum distance
2δ i.e. every two points in C are 2δ-far in Hamming distance.

I Definition 16 (Locally Decodable Code). Let Σ be some finite alphabet and let C : {0, 1}k →
Σn. C is called a (q, δ, ε)-LDC if there exists a randomized algorithm A such that following
is true:
1. A is given oracle access to some z ∈ Σn and an input i ∈ [k]. It outputs a bit after

making at most q queries to z.
2. If z ∈ Σn is δ-close to a codeword C(x) in Hamming distance for some x ∈ {0, 1}k, then

for every i ∈ [k], Pr[Az(i) = xi] > 1
2 + ε.

We will need the notion of VC-dimension for the reduction.

I Definition 17. Let A ⊆ {0, 1}n, then the VC-dimension of A, denoted by vc(A) is the
cardinality of the largest set I ⊆ [n] which is shattered by A i.e. the restriction of A to I,
A|I = {0, 1}I .

The following lemma due to Dudley([11]) says that if a set A ⊆ {0, 1}n has points that are
far apart from each other, then it has large VC-dimension.

A. Bhattacharyya, S. Gopi, and A. Tal 30:15

I Lemma 18 (Theorem 14.12 in [21]). Let A ⊆ {0, 1}n such that for every distinct x, y ∈ A,
‖x− y‖`2 > ε

√
n. Then

vc(A) > Ω
(

log |A|
log(2/ε)

)
.

We are now ready to prove the reduction from LCCs to LDCs.

I Theorem 19. Let C ⊆ Σn be a (q, δ, ε)-LCC, then there exists a (q, δ, ε)-LDC C′ : {0, 1}k →
Σn with

k = Ω
(

log |C|
log(1/δ)

)
.

Proof. Wlog let us assume Σ = {0, 1}s. Let C0 : {0, 1}s → {0, 1}t be an error correcting
code with distance δ0 which is some fixed constant. We can extend C0 : Σn → {0, 1}nt as

C0(z1, · · · , zn) = (C0(z1), · · · , C0(zn)).

By Lemma 15, every two points in C are 2δ-far in Hamming distance, it is easy to see that
in the concatenated code C1 = C0 ◦ C ⊆ {0, 1}tn every two points are 2δ · δ0 far apart in
Hamming distance. So every two points in C1 are separated by ε

√
nt distance in `2 norm

where ε =
√

2δδ0. So by Lemma 18,

vc(C1) > Ω
(

log |C1|
log(2/ε)

)
= Ω

(
log |C|

log(1/δ)

)
.

Therefore there exists a set I ⊆ [nt] of size k = vc(C1) such that C1|I = {0, 1}I .
Now define C′ : {0, 1}I → Σn as follows: C′(x) = z where z ∈ C is chosen such that

C0(z)|I = x (if there are many such z, you can choose one arbitrarily). So the image
C′({0, 1}I) ⊆ C. Now we claim that C′ is an q-query LDC. Given a word r ∈ Σn which is
δ-close to C′(x), say we want to decode the ith message coordinate xi. Suppose i belongs
to the jth block of ({0, 1}t)n for some j ∈ [n]. The local decoder of C′ will run the local
corrector of C to correct the jth coordinate of r and apply C0 to find the required bit xi.
So the local decoder for C′ makes at most q queries and the probability that it outputs xi
correctly is at least 1/2 + ε. J

B Decomposition into expanding subgraphs

The goal of this section is to develop a decomposition lemma that approximately partitions
any directed graph into a collection of disjoint expanding subgraphs. We use the following
notion of edge expansion:

I Definition 20. A directed graph G = (V,E) is an α-edge expander if for every nonempty
S ⊂ V ,

|E(S, V \ S)| > α|S||V \ S|.

Here, E(A,B) is the set of edges going from A to B.

We will need the following degree form of Szemerédi regularity lemma which can be
derived from the usual form of Szemerédi regularity lemma for directed graphs proved in [1].

APPROX/RANDOM’17

30:16 Lower Bounds for 2-Query LCCs over Large Alphabet

I Definition 21. Let G = (V,E) be a directed graph. We denote the indegree of a vertex
v ∈ V by deg−G(v) and the outdegree by deg+

G(v). Given disjoint subsets A,B ⊂ V , the
density d(A,B) between A,B is defined as

d(A,B) = E(A,B)
|A||B|

where E(A,B) is the set of edges going from A to B. We say that (A,B) is ε-regular if for every
subsets A′ ⊂ A and B′ ⊂ B such that |A′| > ε|A| and |B′| > ε|B|, |d(A′, B′)− d(A,B)| 6 ε.

Note that the order of A,B is important in the definition of an ε-regular pair.

I Lemma 22 (Szemerédi regularity lemma for directed graphs (see Lemma 39 in [27])). For
every ε > 0, there exists an M(ε) > 0 such that the following is true. Let G = (V,E) be
any directed graph on |V | = n vertices and let 0 < d < 1 be any constant. Then there
exists a directed subgraph G′ = (V ′, E′) of G and an equipartition of V ′ into k disjoint parts
V1, · · · , Vk such that
1. k 6M(ε).
2. |V \ V ′| 6 εn.
3. All parts V1, · · · , Vk have the same size m 6 εn.
4. deg+

G′(v) > deg+
G(v)− (d+ ε)n for every v ∈ V ′.

5. deg−G′(v) > deg−G(v)− (d+ ε)n for every v ∈ V ′.
6. G′ doesn’t contain edges inside the parts Vi i.e. E′(Vi, Vi) = ∅ for every i.
7. All pairs G′(Vi, Vj) with i 6= j are ε-regular, each with density 0 or at least d.

The regularity lemma above asserts pseudorandomness in the edges going between parts
of the partition. For our application and others, it is more natural to require the edges inside
each subgraph to display pseudorandomness. As the proof of our Decomposition Lemma
shows, we can obtain this from Lemma 22 with some work.

I Lemma 23 (Decomposition Lemma). Let G = (V,E) be any directed graph on |V | = n

vertices. For 0 < d < 1 and 0 < ε < d/6, there exists a directed subgraph G′ = (V ′, E′) and
a partition of V ′ into U1, U2, · · · , UK where K 6M(ε) depends only on ε such that:
1. |V \ V ′| 6 3εn.
2. deg+

G′(v) > deg+
G(v)− (d+ 3ε)n for every v ∈ V ′.

3. deg−G′(v) > deg−G(v)− (d+ 3ε)n for every v ∈ V ′.
4. There are no edges from Ui to Uj where i > j.
5. For 1 6 i 6 K, the induced subgraph G′(Ui) is either empty or is a α-edge expander

where α = α(ε) > 0.

Proof. We will first apply Lemma 22 to G to get a directed subgraph G′′(V ′′, E′′) along with
a partition of V ′′ = V1 ∪ · · · ∪ Vk as in the lemma where k 6M(ε). We know that every pair
G′′(Vi, Vj) is ε-regular with density 0 or at least d. Let us construct a reduced directed graph
R([k], ER) where (i, j) ∈ ER iff G′′(Vi, Vj) has density at least d. Now R has a partition
into strongly connected components say given by [k] = S1 ∪ · · · ∪ SK where K 6M(ε) and
S1, S2, · · · , SK are in topological ordering i.e. there are no edges from Si to Sj when i > j.
We will find a large subset V ′j ⊂ Vj for each of the parts such that |Vj \ V ′j | 6 2ε|Vj | and
define Ui = ∪j∈SiV

′
j . Our final vertex set will be V ′ = ∪Ki=1Ui and the graph G′ will be the

subgraph G′′(V ′). We have

|V \ V ′| 6 |V \ V ′′|+
k∑
i=1
|Vi \ V ′i | 6 3εn.

A. Bhattacharyya, S. Gopi, and A. Tal 30:17

For every v ∈ V ′,

deg−G′(v) > deg−G′′(v)−
k∑
i=1
|Vi \ V ′i | > deg−G(v)− (d+ ε)n− 2εn = deg−G(v)− (d+ 3ε)n.

Similarly deg+
G′(v) > deg+

G(v) − (d + 3ε)n. Because the components S1, · · · , Sk are in
topological ordering with respect to the reduced graph R, we cannot have any edges between
Ui and Uj where i > j.

Now we describe how to find these subsets V ′j where j ∈ Si for each of the Si’s and also
show the required expansion property. If Si is a singleton set i.e. Si = {j} for some j, then
we just define V ′j = Vj . In this case, we will have Ui = Vj and the subgraph G′(Ui) will be
empty. If |Si| > 1, the subgraph R(Si) is strongly connected with at least two vertices. So
every vertex j ∈ Si has at least one outgoing neighbor and one incoming neighbor in R(Si);
choose one outgoing neighbor and call it N+(j) and choose one incoming neighbor and call it
N−(j). Let V ′j ⊂ Vj be the subset of vertices with at least (d− ε)|VN+(j)| outgoing neighbors
in VN+(j) and at least (d− ε)|VN−(j)| incoming neighbors in VN−(j). We will now show that
|Vj \V ′j | 6 2ε|Vj |. Let B+

j ⊂ Vj be the set of vertices with less than (d− ε)|VN+(j)| neighbors
in VN+(j). Define B−j ⊂ Vj similarly. We have V ′j = Vj \ (B+

j ∪B
−
j). So it is enough to show

|B+
j | 6 ε|Vj | and |B−j | 6 ε|Vj |.
Consider the ε-regular pair (Vj , VN+(j)) which has density at least d. The density between

B+
j and VN(j) can be bounded as

|E′′(B+
j , VN+(j))|

|B+
j ||VN+(j)|

< d− ε 6 d(Vj , VN+(j))− ε.

By ε-regularity of G′′(Vj , VN+(j)), we must have |B+
j | 6 ε|Vj | as required. Similarly we have

|B−j | 6 ε|Vj |.
Now we need to show that G′(Ui) is an α-edge expander. Let A ⊂ Ui. For j ∈ Si, define

Aj = A∩ V ′j and Āj = V ′j \A and let Ā = Ui \A. We want to show that E′(A, Ā) > α|A||Ā|
for some constant α(ε) > 0. We have three cases:
Case 1: ∃j, ` ∈ Si such that |Aj | > 2ε|V ′j | and |Ā`| > 2ε|V ′` |.

Label vertices of R(Si) with A if |Aj | > 2ε|V ′j | and also with a label Ā if |Āj | > 2ε|V ′j |.8
Every vertex should get at least one of the labels and j has label A and ` has label Ā.
Since |Si| > 1, we can assume with out loss of generality that j 6= `. Since the graph
R(Si) is strongly connected, there is a directed path from j to `. On this path, there
must exist two adjacent vertices p, q ∈ Si such that p has label A, q has label Ā and
there is an edge from p to q in R(Si). We have

|Ap| > 2ε|V ′p | > 2ε(1− 2ε)|Vp| > ε|Vp|

and similarly |Āq| > ε|Vq|. By ε-regularity of G′′(Vp, Vq), we can lower the bound the
number of edges between A and Ā as follows:

|E′(A, Ā)| > |E′′(Ap, Āq)| > (d− ε)|Ap||Āq| > ε2(d− ε)n2/k2 > α0|A||Ā|

where α0(ε) = 5ε3/M(ε)2 is some constant depending on ε.

8 Some vertices can get both labels, but every vertex will get at least one label.

APPROX/RANDOM’17

30:18 Lower Bounds for 2-Query LCCs over Large Alphabet

Case 2: For every j ∈ Si, |Aj | < 2ε|V ′j |.
By averaging there exists some j ∈ Si such that |Aj | > |A|/|Si| > |A|/k. We know that
every vertex in V ′j has at least (d− ε)|VN+(j)| out neighbors in VN+(j), out of these at
least

(d− ε)|VN+(j)| − |VN+(j) \ V ′N+(j)| − |AN+(j)| > (d− 5ε)|VN+(j)|

should lie in ĀN+(j). So we can bound the expansion as follows:

|E′(A, Ā)| > |E′′(Aj , ĀN+(j))| > (d− 5ε)|VN+(j)||Aj | > (d− 5ε)n
k

|A|
k

> α1|A||Ā|

where α1 = ε/M(ε)2 is some constant depending only on ε.
Case 3: For every j ∈ Si, |Āj | < 2ε|V ′j |.

This is very similar to Case 2. By averaging there exists some j ∈ Si such that |Āj | >
|Ā|/|Si| > |Ā|/k. Every vertex in V ′j has at least (d− ε)|VN−(j)| incoming neighbors in
VN−(j), out of these at least

(d− ε)|VN−(j)| − |VN−(j) \ V ′N−(j)| − |ĀN−(j)| > (d− 5ε)|VN−(j)|

should lie in AN−(j). So,

|E′(A, Ā)| > |E′′(AN−(j), Āj)| > (d− 5ε)|VN−(j)||Āj | > (d− 5ε)n
k

|Ā|
k

> α1|A||Ā|

where α1 = ε/M(ε)2.
Finally we can take α = min(α0, α1), to get the required expansion property. J

The decomposition lemma allows to give an alternative proof for Claim 7, with worse
dependency on τ . To account for that, we restate Claim 7 and replace O((1/τ4) · logn) with
Oτ (logn).

I Claim 24. Let S be a set of size Oτ (logn) such that R(S) = T1. Then, S can be extended
by at most Oτ (logn) elements, such that R(S) = V .

Proof. Let {Mv : v ∈ T2} be the matchings obtained from Lemma 3, we know that
|Mv| > τ

4n for each v ∈ T2. We will construct a directed graph G(V,E) where V = [n] and
E is defined as follows. For every v ∈ T2 \R(S) and every edge {i, j} ∈ Mv, add directed
edges (i, v), (j, v) to E. Thus there is a natural pairing among the directed edges of G, we
will call (j, v) the pairing edge of (i, v) and vice versa. {i, j} is called the matching edge
corresponding to the pair (i, v), (j, v). Since each matchingMv has size > τn/4, we have
deg−G(v) > δn where δ := τ/2 for every v ∈ T2 \R(S) = V \R(S).

We now apply Lemma 23 to get a subgraph G′ = (V ′, E′) as described in the lemma
where we will choose ε = δ/100 and d = δ/10. Let V ′ = U1 ∪ · · · ∪UK be the partition of G′
as described in the lemma where K 6M(δ). Let V0 = [n] \ V ′ be the remaining vertices, we
have |V0| 6 3εn. Each vertex v ∈ V ′ ∩ (T2 \ R(S)) has deg−G′(v) > (δ − d− 3ε)n. We also
know that each sub-graph G′(Ui) is either empty or is an α-edge expander for some constant
α(ε) > 0.

Note that S already has Oτ (logn) vertices. We will now grow the set S of coordinates
queried by P iteratively, adding one at a time. Algorithm 1 gives the procedure for growing
the set S.

We will finish the analysis in a series of claims. Let us start with a simple claim about
properties of R(S).

A. Bhattacharyya, S. Gopi, and A. Tal 30:19

Algorithm 1 Algorithm for growing S
for i = 1 to K do

Intialization: Pick one vertex from Ui and add it to S.
while Ui * R(S) do
Pick any v ∈ V \ R(S) such that adding it to S will add the maximum number of
vertices in Ui \R(S) to R(S).

end while
end for

I Claim 25. R(S) has the following properties:
1. If i, j ∈ R(S) and (i, j) ∈Mk then k ∈ R(S).
2. For every edge (i, k) ∈ E(R(S), V \ R(S)), there is a unique j ∈ V \ R(S) such that

(i, j) ∈Mk.

Proof. (1) We can recover ci, cj from c|S and then use them to recover ck since by Lemma 3,
there exists an algorithm Rki,j such that for every c ∈ C, Rki,j(ci, cj) = ck.
(2) Let (j, k) be the pairing edge of (i, k) so that (i, j) ∈ Mk. Now j cannot be in R(S)
because of (1). J

Algorithm 1 should terminate, since |Ui∩R(S)| increases by at least one in every iteration
of the while loop. At the end of the procedure we clearly have V ′ = U1 ∪ · · · ∪ UK ⊂ R(S).
In fact, we can claim that at the end of the procedure R(S) = V i.e. we can recover all the
coordinates of c from c|S .

I Claim 26. After Algorithm 1 terminates, R(S) = V = [n].

Proof. After Algorithm 1 terminates, we have V ′ ⊂ R(S). Now we are left with V0 = V \ V ′
where we know that |V0| 6 3εn. Now if w ∈ V0 \R(S) then w ∈ T2 \R(S) since T1 ⊂ R(S).
Therefore deg−G(w) > δn. So there must be δn− |V0| > (δ − 3ε)n incoming edges from V ′ to
w. So two of these incoming edges must from a pair and so we have w ∈ R(S) by part (1) of
Claim 25. Therefore V0 ⊂ R(S) as well. J

I Claim 27. Algorithm 1 terminates after Oδ(logn) rounds.

Proof. We just need to show that the while loop runs for Oδ(logn) rounds for each i ∈ [K]
since the outer for loop runs for K times where K 6M(δ). There are two cases:
Case 1: The subgraph G′(Ui) is empty.

In this case, we will show that Ui must already be contained in R(S). Suppose not, let
w ∈ Ui \R(S), we have deg−G′(w) > (δ − d− 3ε)n. Moreover, all of these incoming edges
come from U1, · · · , Ui−1 (note that this means i > 1 for this case to happen). Therefore
there must be two incoming edges from U1 ∪ · · · ∪Ui−1 which form a pair i.e. there exists
u, v ∈ U1 ∪ · · · ∪Ui−1 such that (u, v) ∈Mw. So by part (1) of Claim 25, w ∈ R(S). This
is a contradiction.

Case 2: The subgraph G′(Ui) is an α-edge expander.
If Ui * R(S), we will show that after the end of the iteration ti := |R(S) ∩ Ui| increases
by a factor of (1 + εα). This will prove the required claim because ti is upper bounded
by n.
We first claim that |Ui \R(S)| > εn. Suppose this is not true i.e. |Ui \R(S)| 6 εn. Let
w ∈ Ui \ R(S). We know that w has deg−G′(w) > (δ − d − 3ε)n incoming edges in G′.
Since no edges come from Uj for j > i, at least (δ− d− 3ε)n− |Ui \R(S)| > (δ− d− 4ε)n

APPROX/RANDOM’17

30:20 Lower Bounds for 2-Query LCCs over Large Alphabet

of them come from U1 ∪ · · · ∪ Ui−1 ∪ (Ui ∩R(S)) ⊂ R(S). Therefore two of the incoming
edges must form a pair and so w ∈ R(S) which is a contradiction.
Since G′(Ui) is an α-edge expander, we have

E(Ui ∩R(S), Ui \R(S)) > αti|Ui \R(S)| > αεtin.

By part (2) of Claim 25, each edge from Ui∩R(S) to Ui \R(S) corresponds to a matching
edge between Ui∩R(S) and V \R(S) and it belongs to a matching which corresponds to a
vertex in Ui \R(S). Therefore there are at least αεtin matching edges between Ui ∩R(S)
and V \ R(S) which belong to ∪w∈Ui\R(S)Mw; by averaging there exists v ∈ V \ R(S)
which is incident to αεtin/|V \R(S)| > αεti of these matching edges. So adding this v to
S will add αεti new vertices of Ui \R(S) to R(S), increasing ti by a factor of (1 + αε).

J
J

	Introduction
	Discussion of Main Result
	Proof Overview

	Zero-error 2-query LCCs
	Proof of lower bound
	An information theoretic lemma
	Proof of Theorem 1
	Proof of Claim 7

	LDCs from LCCs
	Decomposition into expanding subgraphs

