8,444 research outputs found

    Relaxing in foam

    Get PDF
    We investigate the mechanical response of an aqueous foam, and its relation to the microscopic rearrangement dynamics of the bubble-packing structure. At rest, even though the foam is coarsening, the rheology is demonstrated to be linear. Under flow, shear-induced rearrangements compete with coarsening-induced rearrangements. The macroscopic consequences are captured by a novel rheological method in which a step-strain is superposed on an otherwise steady flow

    Organizational Control Systems and Software Quality: A Cross-National Study.

    Get PDF
    This study explores the relationship between organizational control modes (behavior, outcome, and clan) andsoftware quality. Much of the previous work on organizational control has examined the choice of modes giventask characteristics. This research extends work in control theory by considering the impact of control modeson the increasingly critical organizational outcome of software quality. The research is set in the context ofsoftware development organizations in three of the largest software developing countries: India, Ireland, andIsrael (the 3Is). A cross sectional survey of 400 software development organizations across the 3Is will be usedto test the developed model. In addition to the theoretical contributions, the study will provide practicalimplications to support software project managers in making better organizational control choices

    Remnants from Gamma-Ray Bursts

    Full text link
    We model the intermediate time evolution of a "jetted" gamma-ray burst by two blobs of matter colliding with the interstellar medium. We follow the hydrodynamical evolution of this system numerically and calculate the bremsstrahlung and synchrotron images of the remnant. We find that for a burst energy of 105110^{51} erg the remnant becomes spherical after 5000\sim 5000 years when it collects 50M\sim 50M_\odot of interstellar mass. This result is independent of the exact details of the GRB, such as the opening angle. After this time a gamma-ray burst remnant has an expanding sphere morphology. The similarity to a supernova remnant makes it difficult distinguish between the two at this stage. The expected number of non-spherical gamma-ray burst remnants is 0.05\sim0.05 per galaxy for a beaming factor of 0.01 and a burst energy of 105110^{51} erg. Our results suggest that that the double-shell object DEM L 316 is not a GRB remnant.Comment: 16 pages, 9 figures, Substantial revisions, Accepted by Ap

    Further evidence for intra-night optical variability of radio-quiet quasars

    Get PDF
    Although well established for BL Lac objects and radio-loud quasars, the occurrence of intra-night optical variability (INOV) in radio-quiet quasars is still debated, primarily since only a handful of INOV events with good statistical significance, albeit small amplitude, have been reported so far. This has motivated us to continue intra-night optical monitoring of bona-fide radio-quiet quasars (RQQs). Here we present the results for a sample of 11 RQQs monitored by us on 19 nights. On 5 of these nights a given RQQ was monitored simultaneously from two well separated observatories. In all, two clear cases and two probable case of INOV were detected. From these data, we estimate an INOV duty cycle of \sim8% for RQQs which would increase to 19% if the `probable variable' cases are also included. Such comparatively small INOV duty cycles for RQQs, together with the small INOV amplitudes (\sim1%), are in accord with the previously deduced characteristics of this phenomenon.Comment: 15 Pages, 4 Tables, 24 Figures; Accepted in BAS

    Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines

    Get PDF
    The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present as an impurity in the propellants and/or these can form in the boundary layer as a result of interaction of the hot plume with the atmosphere during the ground testing of engines. Ten additional electronic band systems of these five molecules have been included into the code. A comprehensive literature search was conducted to obtain the most accurate values for the molecular and the spectral parameters, including Franck-Cordon factors and electronic transition moments for all ten band systems. For each elemental transition in the RPSSC, six spectral parameters - Doppler broadened line width at half-height, pressure-broadened line width at half-height, electronic multiplicity of the upper state, electronic term energy of the upper state, Einstein transition probability coefficient, and the atomic line center - are required. Input files have been created for ten elements of Ni, Fe, Cr, Co, Cu, Ca, Mn, Al, Ag, and Pd, which retain only relatively moderate to strong transitions in 300 to 430 nm spectral range for each element. The number of transitions in the input files is 68 for Ni; 148 for Fe; 6 for Cr; 87 for Co; 1 for Ca; 3 for Mn; 2 each for Cu, Al, and Ag; and 11 for Pd
    corecore