8,444 research outputs found
Relaxing in foam
We investigate the mechanical response of an aqueous foam, and its relation
to the microscopic rearrangement dynamics of the bubble-packing structure. At
rest, even though the foam is coarsening, the rheology is demonstrated to be
linear. Under flow, shear-induced rearrangements compete with
coarsening-induced rearrangements. The macroscopic consequences are captured by
a novel rheological method in which a step-strain is superposed on an otherwise
steady flow
Organizational Control Systems and Software Quality: A Cross-National Study.
This study explores the relationship between organizational control modes (behavior, outcome, and clan) andsoftware quality. Much of the previous work on organizational control has examined the choice of modes giventask characteristics. This research extends work in control theory by considering the impact of control modeson the increasingly critical organizational outcome of software quality. The research is set in the context ofsoftware development organizations in three of the largest software developing countries: India, Ireland, andIsrael (the 3Is). A cross sectional survey of 400 software development organizations across the 3Is will be usedto test the developed model. In addition to the theoretical contributions, the study will provide practicalimplications to support software project managers in making better organizational control choices
Recommended from our members
Form Accuracy Analysis of Cylindrical Parts Produced by Rapid Prototyping
Solid Freeform fabrication processes are being considered for creating fit and assembly
nature functional parts. It is extremely important that these parts are within allowable
dimensional and geometric tolerance. The part accuracy produced by rapid prototyping process
is greatly affected by the relative orientation of build and face normal directions. A systematic
method is needed to find the reliability of the created product. This paper discusses the work
done in this area and the effect of build orientation on the part form accuracy analysis of each
specified tolerance like circularity and cylindricity. Feasible build direction that can be used to
satisfy those tolerances is identified. It will help process engineer in selecting a build direction
that can satisfy a mathematical model of form tolerance.Mechanical Engineerin
Remnants from Gamma-Ray Bursts
We model the intermediate time evolution of a "jetted" gamma-ray burst by two
blobs of matter colliding with the interstellar medium. We follow the
hydrodynamical evolution of this system numerically and calculate the
bremsstrahlung and synchrotron images of the remnant. We find that for a burst
energy of erg the remnant becomes spherical after years
when it collects of interstellar mass. This result is
independent of the exact details of the GRB, such as the opening angle. After
this time a gamma-ray burst remnant has an expanding sphere morphology. The
similarity to a supernova remnant makes it difficult distinguish between the
two at this stage. The expected number of non-spherical gamma-ray burst
remnants is per galaxy for a beaming factor of 0.01 and a burst
energy of erg. Our results suggest that that the double-shell object
DEM L 316 is not a GRB remnant.Comment: 16 pages, 9 figures, Substantial revisions, Accepted by Ap
Further evidence for intra-night optical variability of radio-quiet quasars
Although well established for BL Lac objects and radio-loud quasars, the
occurrence of intra-night optical variability (INOV) in radio-quiet quasars is
still debated, primarily since only a handful of INOV events with good
statistical significance, albeit small amplitude, have been reported so far.
This has motivated us to continue intra-night optical monitoring of bona-fide
radio-quiet quasars (RQQs). Here we present the results for a sample of 11 RQQs
monitored by us on 19 nights. On 5 of these nights a given RQQ was monitored
simultaneously from two well separated observatories. In all, two clear cases
and two probable case of INOV were detected. From these data, we estimate an
INOV duty cycle of 8% for RQQs which would increase to 19% if the
`probable variable' cases are also included. Such comparatively small INOV duty
cycles for RQQs, together with the small INOV amplitudes (1%), are in
accord with the previously deduced characteristics of this phenomenon.Comment: 15 Pages, 4 Tables, 24 Figures; Accepted in BAS
Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines
The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present as an impurity in the propellants and/or these can form in the boundary layer as a result of interaction of the hot plume with the atmosphere during the ground testing of engines. Ten additional electronic band systems of these five molecules have been included into the code. A comprehensive literature search was conducted to obtain the most accurate values for the molecular and the spectral parameters, including Franck-Cordon factors and electronic transition moments for all ten band systems. For each elemental transition in the RPSSC, six spectral parameters - Doppler broadened line width at half-height, pressure-broadened line width at half-height, electronic multiplicity of the upper state, electronic term energy of the upper state, Einstein transition probability coefficient, and the atomic line center - are required. Input files have been created for ten elements of Ni, Fe, Cr, Co, Cu, Ca, Mn, Al, Ag, and Pd, which retain only relatively moderate to strong transitions in 300 to 430 nm spectral range for each element. The number of transitions in the input files is 68 for Ni; 148 for Fe; 6 for Cr; 87 for Co; 1 for Ca; 3 for Mn; 2 each for Cu, Al, and Ag; and 11 for Pd
- …
