7,909 research outputs found

    Linear dynamics of the solar convection zone: excitation of waves in unstably stratified shear flows

    Get PDF
    In this paper we report on the nonresonant conversion of convectively unstable linear gravity modes into acoustic oscillation modes in shear flows. The convectively unstable linear gravity modes can excite acoustic modes with similar wave-numbers. The frequencies of the excited oscillations may be qualitatively higher than the temporal variation scales of the source flow, while the frequency spectra of the generated oscillations should be intrinsically correlated to the velocity field of the source flow. We anticipate that this nonresonant phenomenon can significantly contribute to the production of sound waves in the solar convection zone.Comment: 8 pages. To appear in the proceedings of the conference "Waves in Dusty, Solar and Space Plasmas", Leuven, Belgium 21-26 May 200

    Robust Line Planning in case of Multiple Pools and Disruptions

    Full text link
    We consider the line planning problem in public transportation, under a robustness perspective. We present a mechanism for robust line planning in the case of multiple line pools, when the line operators have a different utility function per pool. We conduct an experimental study of our mechanism on both synthetic and real-world data that shows fast convergence to the optimum. We also explore a wide range of scenarios, varying from an arbitrary initial state (to be solved) to small disruptions in a previously optimal solution (to be recovered). Our experiments with the latter scenario show that our mechanism can be used as an online recovery scheme causing the system to re-converge to its optimum extremely fast.Comment: To appear in TAPAS 201

    Effect of partial ionization on wave propagation in solar magnetic flux tubes

    Full text link
    Observations show that waves are ubiquitous in the solar atmosphere and may play an important role for plasma heating. The study of waves in the solar corona is usually based on linear ideal magnetohydrodynamics (MHD) for a fully ionized plasma. However, the plasma in the photosphere and the chromosphere is only partially ionized. Here we investigate theoretically the impact of partial ionization on MHD wave propagation in cylindrical flux tubes in the two-fluid model. We derive the general dispersion relation that takes into account the effects of neutral-ion collisions and the neutral gas pressure. We take the neutral-ion collision frequency as an arbitrary parameter. Particular results for transverse kink modes and slow magnetoacoustic modes are shown. We find that the wave frequencies only depend on the properties of the ionized fluid when the neutral-ion collision frequency is much lower that the wave frequency. For high collision frequencies realistic of the solar atmosphere ions and neutrals behave as a single fluid with an effective density corresponding to the sum of densities of both fluids and an effective sound velocity computed as the average of the sound velocities of ions and neutrals. The MHD wave frequencies are modified accordingly. The neutral gas pressure can be neglected when studying transverse kink waves but it has to be taken into account for a consistent description of slow magnetoacoustic waves. The MHD waves are damped due to neutral-ion collisions. The damping is most efficient when the wave frequency and the collision frequency are of the same order of magnitude. For high collision frequencies slow magnetoacoustic waves are more efficiently damped than transverse kink waves. In addition, we find the presence of cut-offs for certain combinations of parameters that cause the waves to become non-propagating.Comment: Accepted for publication in A&

    Children's opinions on effective strategies to cope with bullying: the importance of bullying role and perspective

    Get PDF
    In order to find out what children would suggest as useful interventions to stop bullying, we designed a questionnaire administered to 311 children (155 boys and 156 girls; mean age = 11 years). Thirty-six items were employed to ask children how effective, in their opinion, retaliation, nonchalance and assertiveness could be in stopping bullying. Items were presented to children from three different perspectives (imagine you are the victim, the bully or a witness). We used peer reports to assess children's role in bullying. Children were grouped into bullies, followers of the bully, defenders of the victims, outsiders, victims and those not involved. The strategy most frequently chosen by all children was to cope with bullying through assertiveness. Bullies considered retaliation effective more often than their classmates, especially when they adopted the perspective of the victim or witness. Bullies did not consider assertive strategies as efficient in stopping the bully. Defenders, outsiders, victims and children not involved, on the other hand, were very much in favour of strategies aimed at solving the conflict through nonchalance or assertiveness, especially when they imagined being the bully. Girls chose assertive strategies more often than boys and younger children preferred nonchalance more often than older children, who tended to choose retaliation more often. Suggestions for intervention are made. © 2005 NFER

    XMM-Newton and INTEGRAL analysis of the Supergiant Fast X-ray Transient IGR J17354-3255

    Get PDF
    We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354−-3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial pointing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across ∌66%\sim66\% of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.Comment: 13 pages, 9 figures, This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society Published by Oxford University Pres

    An Update on Airborne Contact Dermatitis: 2001-2006

    Get PDF
    Reports on airborne dermatoses are mainly published in the context of occupational settings. Hence, in recent years, dermatologists and also occupational physicians have become increasingly aware of the airborne source of contact dermatitis, resulting mainly from exposure to irritants or allergens. However, their occurrence is still underestimated, because reports often omit the term 'airborne' in relation to dust or volatile allergens. For the present update, we screened the journals 'Contact Dermatitis' (July 2000 to December 2006); 'Dermatitis', formerly named 'American Journal of Contact Dermatitis'; 'La Lettre du Gerda' (January 2000 to December 2006); and also included relevant articles from other journals published during the same period. This resulted in an updated list of airborne dermatitis causes

    Exact algorithms for procurement problems under a total quantity discount structure.

    Get PDF
    In this paper, we study the procurement problem faced by a buyer who needs to purchase a variety of goods from suppliers applying a so-called total quantity discount policy. This policy implies that every supplier announces a number of volume intervals and that the volume interval in which the total amount ordered lies determines the discount. Moreover, the discounted prices apply to all goods bought from the supplier, not only to those goods exceeding the volume threshold. We refer to this cost-minimization problem as the TQD problem. We give a mathematical formulation for this problem and argue that not only it is NP-hard, but also that there exists no polynomial-time approximation algorithm with a constant ratio (unless P = NP). Apart from the basic form of the TQD problem, we describe three variants. In a first variant, the market share that one or more suppliers can obtain is constrained. Another variant allows the buyer to procure more goods than strictly needed, in order to reach a lower total cost. In a third variant, the number of winning suppliers is limited. We show that the TQD problem and its variants can be solved by solving a series of min-cost flow problems. Finally, we investigate the performance of three exact algorithms (min-cost flow based branch-and-bound, linear programming based branch-and-bound, and branch-and-cut) on randomly generated instances involving 50 suppliers and 100 goods. It turns out that even the large instances of the basic problem are solved to optimality within a limited amount of time. However, we find that different algorithms perform best in terms of computation time for different variants.Algorithms; Approximation; Branch-and-bound; Complexity; Cost; Exact algorithm; Intervals; Linear programming; Market; Min-cost flow; Order; Performance; Policy; Prices; Problems; Procurement; Reverse auction; Structure; Studies; Suppliers; Time; Volume discounts;

    Mechanical cleaning of graphene

    Full text link
    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces charge carrier mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode AFM removes residues and significantly improves the electronic properties. A mechanically cleaned dual-gated bilayer graphene transistor with hBN dielectrics exhibited a mobility of ~36,000 cm2/Vs at low temperature.Comment: 4 pages, 4 figure
    • 

    corecore