19 research outputs found

    Komagataeibacter Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria

    Get PDF
    Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community

    Transport of Folded Proteins by the Tat System

    Get PDF
    The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations

    Reconstitution of a minimal machinery capable of assembling type IV pili

    Get PDF
    Type IV pili (Tfp), which are key virulence factors in many bacterial pathogens, define a large group of multipurpose filamentous nanomachines widespread in Bacteria and Archaea. Tfp biogenesis is a complex multistep process, which relies on macromolecular assemblies composed of 15 conserved proteins in model gram-negative species. To improve our limited understanding of the molecular mechanisms of filament assembly, we have used a synthetic biology approach to reconstitute, in a nonnative heterologous host, a minimal machinery capable of building Tfp. Here we show that eight synthetic genes are sufficient to promote filament assembly and that the corresponding proteins form a macromolecular complex at the cytoplasmic membrane, which we have purified and characterized biochemically. Our results contribute to a better mechanistic understanding of the assembly of remarkable dynamic filaments nearly ubiquitous in prokaryotes
    corecore