254 research outputs found

    Acylceramide Head Group Architecture Affects Lipid Organization in Synthetic Ceramide Mixtures

    Get PDF
    The lipid organization in the upper layer of the skin, the stratum corneum (SC), is important for the skin barrier function. This lipid organization, including the characteristic 13 nm lamellar phase, can be reproduced in vitro with mixtures based on cholesterol, free fatty acids and natural as well as synthetic ceramides (CER). In human SC, nine CER classes have been identified (CER1–CER9). Detailed studies on the effect of molecular structure of individual ceramides on the SC lipid organization are only possible with synthetic lipid mixtures, as their composition can be accurately chosen and systematically modified. In the present study, small-angle X-ray diffraction was used to examine the organization in synthetic lipid mixtures of which the synthetic ceramide fraction was prepared with sphingosine-based CER1 or phytosphingosine-based CER9. The latter acylceramide contains an additional hydroxyl group at the sphingoid backbone. The results show that a gradual increase in CER1 level consistently promotes the formation of the 13 nm lamellar phase and that partial replacement of CER1 by CER9 does not affect the phase behavior. Interestingly, complete substitution of CER1 with CER9 reduces the formation of the long periodicity phase and results in phase separation of CER9

    Phase Behavior of Stratum Corneum Lipid Mixtures Based on Human Ceramides: The Role of Natural and Synthetic Ceramide 1

    Get PDF
    In a recent study the lipid phase behavior of mixtures of human ceramides, cholesterol, and free fatty acids has been examined. We observed in cholesterol: human ceramide mixtures a prominent formation of the 12.8 nm lamellar phase (referred to as the long periodicity phase). Addition of free fatty acids promoted the formation of a 5.6 nm lamellar phase (referred to as the short periodicity phase) and increased the subpopulation of lipids forming a fluid phase. In this study we focused on the role of human ceramide 1, as the presence of this ceramide appeared to be crucial for proper lipid phase behavior in mixtures prepared with ceramide isolated from pig stratum corneum. In order to do this, mixtures of cholesterol and free fatty acids were prepared with human ceramides, in which natural human ceramide 1 was replaced by either synthetic CER1-linoleate (CER1-lin), or CER1-oleate (CER1-ol), or CER1-stearate (CER1-ste). After substitution of natural human ceramide 1 by synthetic ceramide 1 the following observations were made. (i) In the presence of synthetic CER1-ste no long periodicity phase and no liquid phase could be detected. (ii) In the presence of HCER1-ol a liquid phase was more prominently formed than in the presence of HCER1-lin. (iii) In cholesterol:human ceramide mixtures in the presence of CER1-lin the long periodicity phase was more prominently present than in the presence of CER1-ol. (iv) In the presence of CER1-ste neither a long periodicity phase nor a liquid lateral packing could be detected. The results of these studies further indicate that for the formation of the long periodicity phase a certain (optimal) fraction of lipids has to form a liquid phase. When the fraction forming this liquid phase is either too low or too high, the formation of the short periodicity phase is increased at the expense of the formation of the long periodicity phase. Based on the results of this and previous studies we offer an explanation for the deviation in lipid organization in diseased and in dry skin compared to normal skin

    Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization

    Get PDF
    Drug Delivery Technolog

    Barrier Capability of Skin Lipid Models: Effect of Ceramides and Free Fatty Acid Composition

    Get PDF
    -aminobenzoate permeation and transepidermal water loss values as markers for barrier function, we determined that the alterations in SC lipid composition contribute to the impaired barrier function in AD patients. By the use of biophysical techniques, we established that the largest reduction in barrier capability was observed in the model with an increased fraction of short-chain FFAs, evident by the decrease in chain packing density. Modulations in the CER subclass composition impacted the lamellar organization while having a smaller effect on the barrier function. These findings provide evidence that AD therapies normalizing the FFA composition are at least as important as normalizing CER composition.Drug Delivery Technolog
    • …
    corecore