200 research outputs found

    Heteroleptic samarium(III) halide complexes probed by fluorescence-detected L3-edge X-ray absorption spectroscopy

    Get PDF
    Addition of various oxidants to the near-linear Sm(II) complex [Sm(N††)2] (1), where N†† is the bulky bis(triisopropylsilyl)amide ligand {N(SiiPr3)2}, afforded a family of heteroleptic three-coordinate Sm(III) halide complexes, [Sm(N††)2(X)] (X = F, 2-F; Cl, 2-Cl; Br, 2-Br; I, 2-I). In addition, the trinuclear cluster [{Sm(N††)}3(ÎŒ2-I)3(ÎŒ3-I)2] (3), which formally contains one Sm(II) and two Sm(III) centres, was isolated during the synthesis of 2-I. Complexes 2-X are remarkably stable towards ligand redistribution, which is often a facile process for heteroleptic complexes of smaller monodentate ligands in lanthanide chemistry, including the related bis(trimethylsilyl)amide {N(SiMe3)2} (Nâ€Čâ€Č). Complexes 2-X and 3 have been characterised by single crystal X-ray diffraction, elemental analysis, multinuclear NMR, FTIR and electronic spectroscopy. The Lα1 fluorescence-detected X-ray absorption spectrum recorded at the Sm L3-edge for 2-X exhibited a resolved pre-edge peak defined as an envelope quadrupole-allowed 2p → 4f transition. The X-ray absorption spectral features were successfully reproduced using time-dependent density functional theoretical (TD-DFT) calculations that synergistically supports the experimental observations as well as the theoretical model upon which the electronic structure and bonding in lanthanide complexes is derived

    Block bond-order potential as a convergent moments-based method

    Get PDF
    The theory of a novel bond-order potential, which is based on the block Lanczos algorithm, is presented within an orthogonal tight-binding representation. The block scheme handles automatically the very different character of sigma and pi bonds by introducing block elements, which produces rapid convergence of the energies and forces within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the method to the molecular dynamics simulations of large systems. As an illustration of this convergent O(N) method we apply the block bond-order potential to the large scale simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.

    Interactions between brown-dwarf binaries and Sun-like stars

    Full text link
    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga 100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulations demonstrate that such interactions have a negligible chance (<0.001<0.001) of leading to the close brown-dwarf binary being captured by the Sun-like star. Making the interactions dissipative by invoking the hydrodynamic effects of attendant discs might alter this conclusion. However, in order to explain the above statistics, this dissipation would have to favour the capture of brown-dwarf binaries over single brown-dwarfs, and we present arguments why this is unlikely. The simplest inference is that most brown-dwarf binaries -- and therefore possibly also most single brown dwarfs -- form by fragmentation of circumstellar discs around Sun-like protostars, with some of them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and Space Scienc

    Carotenoid content and reflectance of yellow and red nuptial plumages in widowbirds (Euplectes spp.)

    Get PDF
    1. Ornamental carotenoid coloration is commonly based on several different pigments with different nutritional and metabolic constraints. The identification and quantification of carotenoid pigments is therefore crucial to the understanding of signal content and signal evolution. 2. In male widowbirds (Euplectes spp.), the striking yellow and red carotenoid colours have been measured by reflectance spectrometry and studied with respect to sexual selection through male contest competition, but their biochemical mechanisms have not been analysed. 3. Here we use reflectance analysis and high performance liquid chromatography (HPLC) to describe the species-specific colours and plumage carotenoids in three widowbird species: yellow-mantled widowbird (YMW) Euplectes macrourus, red-shouldered widowbird (RSW) E. axillaris and red-collared widowbird (RCW) E. ardens. 4. YMW yellow (‘hue’ colorimetric λR50 = 522 nm) derives from the two ‘dietary yellow’ xanthophylls lutein and zeaxanthin, together with small amounts of ‘derived yellow’ pigments (3â€Č-dehydrolutein and canary xanthophylls). 5. RCW red (λR50 = 574 nm) is achieved by the addition of low concentrations of ‘derived red ’ 4-keto-carotenoids, notably α- and ÎČ-doradexanthin and canthaxanthin. 6. RSW red (λR50 = 589 nm) is, in contrast, created by high concentrations of ‘dietary yellow ’ pigments (lutein, zeaxanthin) and ‘derived yellow ’ anhydrolutein, the latter only recently described in birds. 7. The two different mechanisms of producing red plumage are compared with other bird species and discussed with regard to costs and signal ‘honesty’

    An Effective-Medium Tight-Binding Model for Silicon

    Full text link
    A new method for calculating the total energy of Si systems is presented. The method is based on the effective-medium theory concept of a reference system. Instead of calculating the energy of an atom in the system of interest a reference system is introduced where the local surroundings are similar. The energy of the reference system can be calculated selfconsistently once and for all while the energy difference to the reference system can be obtained approximately. We propose to calculate it using the tight-binding LMTO scheme with the Atomic-Sphere Approximation(ASA) for the potential, and by using the ASA with charge-conserving spheres we are able to treat open system without introducing empty spheres. All steps in the calculational method is {\em ab initio} in the sense that all quantities entering are calculated from first principles without any fitting to experiment. A complete and detailed description of the method is given together with test calculations of the energies of phonons, elastic constants, different structures, surfaces and surface reconstructions. We compare the results to calculations using an empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX, CAMP-090594-

    The long-term survival chances of young massive star clusters

    Full text link
    We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered proto-globular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.Comment: invited refereed review article; ChJA&A, in press; 33 pages LaTeX (2 postscript figures); requires chjaa.cls style fil

    Variety of Methodological Approach in Economics

    Get PDF
    It has been argued by some that the distinction between orthodox economics and heterodox economics does not fit the growing variety in economic theory, unified by a common methodological approach. On the other hand, it remains a central characteristic of heterodox economics that it does not share this methodological approach, but rather represents a range of alternative methodological approaches. The paper explores the evidence, and arguments, for variety in economics at different levels, and a range of issues which arise. This requires in turn a discussion of the meaning of variety in economics at the different levels of reality, methodology, method and theory. It is concluded that there is scope for more, rather than less, variety in economic methodologies, as well as within methodologies. Further, if variety is not to take the form of “anything goes”, then critical discussion by economists of different approaches to economics, and of variety itself, is required

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
    • 

    corecore