1,045 research outputs found

    How historic simulation-observation discrepancy affects future warming projections in a very large model ensemble

    Get PDF
    Projections of future climate made by model-ensembles have credibility because the historic simulations by these models are consistent with, or near-consistent with, historic observations. However, it is not known how small inconsistencies between the ranges of observed and simulated historic climate change affects the future projections made by a model ensemble. Here, the impact of historical simulation-observation inconsistencies on future warming projections is quantified in a 4-million member Monte Carlo ensemble from a new efficient Earth System Model (ESM). Of the 4-million ensemble members, a subset of 182,500 are consistent with historic ranges of warming, heat uptake and carbon uptake simulated by the Climate Model Intercomparison Project 5 (CMIP5) ensemble. This simulation-consistent subset projects similar future warming ranges to the CMIP5 ensemble for all four RCP scenarios, indicating the new ESM represents an efficient tool to explore parameter space for future warming projections based on historic performance. A second subset of 14,500 ensemble members are consistent with historic observations for warming, heat uptake and carbon uptake. This observation-consistent subset projects a narrower range for future warming, with the lower bounds of projected warming still similar to CMIP5, but the upper warming bounds reduced by 20 to 35%. These findings suggest that part of the upper range of 21st century CMIP5 warming projections may reflect historical simulation-observation inconsistencies. However, the agreement of lower bounds for projected warming implies that the likelihood of warming exceeding dangerous levels over the 21st century is unaffected by small discrepancies between CMIP5 models and observations

    Carbon-cycle feedbacks operating in the climate system

    Get PDF
    Climate change involves a direct response of the climate system to forcing which is amplified or damped by feedbacks operating in the climate system. Carbon-cycle feedbacks alter the land and ocean carbon inventories and so act to reduce or enhance the increase in atmospheric CO2 from carbon emissions. The prevailing framework for carbon-cycle feedbacks connect changes in land and ocean carbon inventories with a linear sum of dependencies on atmospheric CO2 and surface temperature. Carbon-cycle responses and feedbacks provide competing contributions: the dominant effect is that increasing atmospheric CO2 acts to enhance the land and ocean carbon stores, so providing a negative response and feedback to the original increase in atmospheric CO2, while rising surface temperature acts to reduce the land and ocean carbon stores, so providing a weaker positive feedback for atmospheric CO2. The carbon response and feedback of the land and ocean system may be expressed in terms of a combined carbon response and feedback parameter, λcarbon in units of W m− 2K− 1, and is linearly related to the physical climate feedback parameter, λclimate, revealing how carbon and climate responses and feedbacks are inter-connected. The magnitude and uncertainties in the carbon-cycle response and feedback parameter are comparable with the magnitude and uncertainties in the climate feedback parameter from clouds. Further mechanistic insight needs to be gained into how the carbon-cycle feedbacks are controlled for the land and ocean, particularly to separate often competing effects from changes in atmospheric CO2 and climate forcing

    Climate sensitivity from both physical and carbon cycle feedbacks

    Get PDF
    The surface warming response to anthropogenic forcing is highly sensitive to the strength of feedbacks in both the physical climate and carbon cycle systems. However, the definitions of climate feedback, λClimate in W·m−2·K−1, and climate sensitivity, SClimate in K/(W/m2), explicitly exclude the impact of carbon cycle feedbacks. Here we provide a new framework to incorporate carbon feedback into the definitions of climate feedback and sensitivity. Applying our framework to the Global Carbon Budget reconstructions reveals a present‐day terrestrial carbon feedback of λCarbon = 0.31 ± 0.09 W·m−2·K−1 and an ocean carbon feedback of −0.06 to 0.015 W·m−2·K−1 in Earth system models. Observational constraints reveal a combined climate and carbon feedback of λClimate+Carbon = 1.48 W·m−2·K−1 with a 95% range of 0.76 to 2.32 W·m−2·K−1 on centennial time scales, corresponding to a combined climate and carbon sensitivity of SClimate+Carbon = 0.67 K/(W/m2) with a 95% range of 0.43 to 1.32 K/(W/m2)

    Bayesian estimation of Earth’s climate sensitivity and transient climate response from observational warming and heat content datasets

    Get PDF
    Future climate change projections, impacts and mitigation targets are directly affected by how sensitive Earth’s global mean surface temperature is to anthropogenic forcing, expressed via the effective climate sensitivity (ECS) and transient climate response (TCR). However, the ECS and TCR are poorly constrained, in part because historic observations and future climate projections consider the climate system under different response timescales with potentially different climate feedback strengths. Here, we evaluate ECS and TCR by using historic observations of surface warming, since the mid-19th century, and ocean heat uptake, since the mid 20th century, to constrain a model with independent climate feedback components acting over multiple response timescales. Adopting a Bayesian approach, our prior uses a constrained distribution for the instantaneous Planck feedback combined with wide-ranging uniform distributions of the strengths of the fast feedbacks (acting over several days) and slow feedbacks (acting over decades). We extract posterior distributions by applying likelihood functions derived from different combinations of observational datasets. The resulting TCR distributions are similar when using different historic datasets: from a TCR of 1.5 (1.3 to 1.7 at 5–95 % range) °C, up to 1.7 (1.4 to 2.0) °C. However, the posterior probability distribution for ECS on a 100-year response timescale varies depending on which combinations of temperature and heat content anomaly datasets are used: from ECS of 2.2 (1.5 to 4.5) °C, for datasets with less historic warming, up to 2.8 (1.8 to 6.1) °C, for datasets with more historic warming. Our results demonstrate how differences between historic climate reconstructions imply significant differences in expected future global warming

    Reconciling atmospheric and oceanic views of the transient climate response to emissions

    Get PDF
    The Transient Climate Response to Emissions (TCRE), the ratio of surface warming and cumulative carbon emissions, is controlled by a product of thermal and carbon contributions. The carbon contribution involves the airborne fraction and the ratio of ocean saturated and atmospheric carbon inventories, with this ratio controlled by ocean carbonate chemistry. The evolution of the carbon contribution to the TCRE is illustrated in a hierarchy of models: a box model of the atmosphere‐ocean and an Earth system model, both integrated for 1,000 years, and a suite of Earth system models integrated for 140 years. For all models, there is the same generic carbonate chemistry response: An acidifying ocean during emissions leads to a decrease in the ratio of the ocean saturated and atmospheric carbon inventories and the carbon contribution to the TCRE. Hence, ocean carbonate chemistry is important in controlling the magnitude of the TCRE and its evolution in time
    corecore