889 research outputs found

    Thermal effects on nuclear symmetry energy with a momentum-dependent effective interaction

    Full text link
    The knowledge of the nuclear symmetry energy of hot neutron-rich matter is important for understanding the dynamical evolution of massive stars and the supernova explosion mechanisms. In particular, the electron capture rate on nuclei and/or free protons in presupernova explosions is especially sensitive to the symmetry energy at finite temperature. In view of the above, in the present work we calculate the symmetry energy as a function of the temperature for various values of the baryon density, by applying a momentum-dependent effective interaction. In addition to a previous work, the thermal effects are studied separately both in the kinetic part and the interaction part of the symmetry energy. We focus also on the calculations of the mean field potential, employed extensively in heavy ion reaction research, both for nuclear and pure neutron matter. The proton fraction and the electron chemical potential, which are crucial quantities for representing the thermal evolution of supernova and neutron stars, are calculated for various values of the temperature. Finally, we construct a temperature dependent equation of state of β\beta-stable nuclear matter, the basic ingredient for the evaluation of the neutron star properties.Comment: 18 pages, 10 figures, 1 table, accepted for publication in Physical Review

    Measurement of the SOC State Specific Heat in ^4He

    Get PDF
    When a heat flux Q is applied downward through a sample of liquid 4He near the lambda transition, the helium self organizes such that the gradient in temperature matches the gravity induced gradient in Tlambda. All the helium in the sample is then at the same reduced temperature tSOC = ((T[sub SOC] - T[sub lambda])/T[sub lambda]) and the helium is said to be in the Self-Organized Critical (SOC) state. We have made preliminary measurements of the 4He SOC state specific heat, C[del]T(T(Q)). Despite having a cell height of 2.54 cm, our results show no difference between C[del]T and the zero-gravity 4He specific heat results of the Lambda Point Experiment (LPE) [J.A. Lipa et al., Phys. Rev. B, 68, 174518 (2003)] over the range 250 to 450 nK below the transition. There is no gravity rounding because the entire sample is at the same reduced temperature tSOC(Q). Closer to Tlambda the SOC specific heat falls slightly below LPE, reaching a maximum at approximately 50 nK below Tlambda, in agreement with theoretical predictions [R. Haussmann, Phys. Rev. B, 60, 12349 (1999)]

    Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ

    Get PDF
    In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ[equivalent]C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ~7–12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement

    Enhanced heat capacity and a new temperature instability in superfluid He-4 in the presence of a constant heat flux near T-lambda

    Get PDF
    We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda point Tλ, is enhanced by a constant heat flux Q. The heat capacity at constant Q, CQ, is predicted to diverge at a temperature Tc(Q)<Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q), below the theoretical value, Tc(Q). We argue that TDAS(Q) can be accounted for by a temperature instability at the cell wall, and is therefore distinct from Tc(Q). The excess heat capacity we measure has the predicted scaling behavior as a function of T and Q, but it is much larger than predicted by current theory

    Heat capacity of multilayer methane on graphite: Phase transitions in the first four layers

    Get PDF
    We present high-resolution heat-capacity data for methane adsorbed on graphite for nominal coverages of 0.87 to 7 layers, from T = 70 to 120 K. For films thicker than 1.1 layers, we find capillary condensate coexisting with the film. We have performed heat-capacity scans on films formed by both adsorption and desorption. By comparing the locations of the phase transitions in the chemical potential mu vs T plane, we find that there is no significant interaction between the film and the capillary condensate. The heat-capacity signals from the films map out an unexpectedly rich set of phenomena for the second, third, and fourth layers, including a two-dimensional triple point and a liquid-gas coexistence region for each layer. The fourth-layer critical temperature we find is lower than previous values found by vapor-pressure isotherms

    Equation of state for dense supernova matter

    Full text link
    We provide an equation of state for high density supernova matter by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter containing leptons (electrons and neutrinos) under the chemical equilibrium condition. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of the lepton fractions and afterwards the evaluation of internal energy, pressure, entropy and in total to the equation of state of hot nuclear matter for various isothermal cases. Thermal effects on the properties and equation of state of nuclear matter are evaluated and analyzed in the framework of the proposed effective interaction model. Since supernova matter is characterized by a constant entropy we also present the thermodynamic properties for isentropic case. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 23 pages, 15 figure

    Equation of state for β\beta-stable hot nuclear matter

    Full text link
    We provide an equation of state for hot nuclear matter in β\beta-equilibrium by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos have left the system. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of proton and lepton fractions and afterwards of internal energy, free energy, pressure and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation of state of nuclear matter are assesed and analyzed in the framework of the proposed effective interaction model. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 28 pages, 18 figure

    Observation of near-surface damage by phonon scattering

    Get PDF
    We have investigated the feasibility of phonon-reflection techniques as nondestructive means to probe surface and/or near-surface damage in otherwise highly perfect crystals. An UHV liquid-helium stage, suitable for phonon-reflection measurements, was installed on a beam line of a tandem van de Graaff accelerator which was used to implant MeV ions into the substrate in order to modify the surface region in situ. Here, we report our investigation on the effects of 1-MeV Ar+ implantation in Al2O3 single crystals by monitoring the reflection of terahertz (THz) phonons (50-AÌŠ wavelength) from the implanted region. The results are compared to other surface techniques. Using a 15-kV ion gun on the same beam line, we have also bombarded Al2O3 crystals coated with thin films of gold. The effects of a 7.5-keV Ar+ beam on this Au-Al2O3 system are also discussed in this paper

    Spin Waves in Striped Phases

    Get PDF
    In many antiferromagnetic, quasi-two-dimensional materials, doping with holes leads to "stripe" phases, in which the holes congregate along antiphase domain walls in the otherwise antiferromagnetic texture. Using a suitably parametrized two-dimensional Heisenberg model on a square lattice, we study the spin wave spectra of well-ordered spin stripes, comparing bond-centered antiphase domain walls to site-centered antiphase domain walls for a range of spacings between the stripes and for stripes both aligned with the lattice ("vertical") and oriented along the diagonals of the lattice ("diagonal"). Our results establish that there are qualitative differences between the expected neutron scattering responses for the bond-centered and site-centered cases. In particular, bond-centered stripes of odd spacing generically exhibit more elastic peaks than their site-centered counterparts. For inelastic scattering, we find that bond-centered stripes produce more spin wave bands than site-centered stripes of the same spacing and that bond-centered stripes produce rather isotropic low energy spin wave cones for a large range of parameters, despite local microscopic anisotropy. We find that extra scattering intensity due to the crossing of spin wave modes (which may be linked to the "resonance peak" in the cuprates) is more likely for diagonal stripes, whether site- or bond-centered, whereas spin wave bands generically repel, rather than cross, when stripes are vertical.Comment: 12 pages, 12 figures, for some high-res.pics, see http://physics.bu.edu/~yaodx/spinwave/spinw.htm

    The Chlamydomonas genome project: A decade on

    Get PDF
    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes
    • …
    corecore