26 research outputs found

    Complement factor H and the hemolytic uremic syndrome

    Get PDF
    Immune recognition is coupled to powerful proinflammatory effector pathways that must be tightly regulated. The ancient alternative pathway of complement activation is one such proinflammatory pathway. Genetic susceptibility factors have been identified in both regulators and activating components of the alternative pathway that are associated with thrombotic microangiopathies, glomerulonephritides, and chronic conditions featuring debris deposition. These observations indicate that excessive alternative pathway activation promotes thrombosis in the microvasculature and tissue damage during debris accumulation. Intriguingly, distinct genetic changes in factor H (FH), a key regulator of the alternative pathway, are associated with hemolytic uremic syndrome (HUS), membranoproliferative glomerulonephritis (dense deposit disease), or age-related macular degeneration (AMD). A mouse model of HUS designed to mirror human mutations in FH has now been developed, providing new understanding of the molecular pathogenesis of complement-related endothelial disorders

    Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney disease: improving global outcomes” (KDIGO) controversies conference

    No full text
    13 p.-3 fig. Goodship, Timothy H.J. et al.In both atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) complement plays a primary role in disease pathogenesis. Herein we report the outcome of a 2015 Kidney Disease: Improving Global Outcomes (KDIGO)Controversies Conference where key issues in the management of these 2 diseases were considered by a global panel of experts. Areas addressed included renal pathology, clinical phenotype and assessment, genetic drivers of disease, acquired drivers of disease, and treatment strategies. In order to help guide clinicians who are caring for such patients, recommendations for best treatment strategies were discussed at length, providing the evidence base underpinning current treatment options. Knowledge gaps were identified and a prioritized research agenda was proposed to resolve outstanding controversial issues.The conference was sponsored by Kidney Disease: Improving Global Outcomes (KDIGO) and supported in part by unrestricted educational grants from Achillion Pharmaceuticals, Akari Therapeutics, Alexion Pharmaceuticals, and Omeros.Peer reviewe

    Whole-Genome Linkage and Association Scan in Primary, Nonsyndromic Vesicoureteric Reflux

    No full text
    Primary vesicoureteric reflux accounts for approximately 10% of kidney failure requiring dialysis or transplantation, and sibling studies suggest a large genetic component. Here, we report a whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux and reflux nephropathy. We used linkage and family-based association approaches to analyze 320 white families (661 affected individuals, generally from families with two affected siblings) from two populations (United Kingdom and Slovenian). We found modest evidence of linkage but no clear overlap with previous studies. We tested for but did not detect association with six candidate genes (AGTR2, HNF1B, PAX2, RET, ROBO2, and UPK3A). Family-based analysis detected associations with one single-nucleotide polymorphism (SNP) in the UK families, with three SNPs in the Slovenian families, and with three SNPs in the combined families. A case-control analysis detected associations with three additional SNPs. The results of this study, which is the largest to date investigating the genetics of reflux, suggest that major loci may not exist for this common renal tract malformation within European populations

    De novo gene conversion in the RCA gene cluster (1q32) causes mutations in complement factor H associated with atypical hemolytic uremic syndrome

    No full text
    3 páginas, 4 figuras, 2 apéndices -- PAGS nros. 292-293Many of the complement regulatory genes within the RCA cluster (1q32) have arisen through genomic duplication and the resulting high degree of sequence identity is likely to predispose to gene conversion events. The highest degree of identity is between the genes for factor H (CFH) and five factor H-related proteins – CFHL1, CFHL2, CFHL3, CFHL4, and CFHL5. CFH mutations are associated with atypical hemolytic uremic syndrome (aHUS). In the Newcastle cohort of 157 aHUS patients we have identified CFH mutations in 25 families or individuals. Eleven of these 25 independent mutations are either c.3226C>G,Q1076E; c.3572C>T,S1191L; c.3590T>C,V1197A or combined c.3572C>T,S1191L/c.3590T>C,V1197A. Sequence analysis shows that all four of these changes could have arisen as a result of gene conversion between CFH and CFHL1. Analysis of parental samples in two patients with S1191L/V1197A has shown that the changes are de novo thus providing conclusive evidence that gene conversion is the mutational mechanism in these two cases. To confirm that S1191L and V1197A are disease predisposing we examined their functional significance in three ways – analysis of the C3b/C3d binding characteristics of recombinant mutant S1191L/V1197A protein, heparin affinity chromatography and haemolytic assays of serum samples from aHUS patients carrying these changes. The results showed that these changes resulted in impaired C3b binding and a defective capacity to control complement activation on cellular surfaces. We, therefore, provide conclusive evidence that gene conversion is responsible for functionally significant CFH mutations in aHUSKidney Research UK, the Northern Counties Kidney Research Fund, the Foundation for Children with atypical HUS and the Robin Davies TrustPeer reviewe

    Genetic studies into inherited and sporadic hemolytic uremic syndrome

    Get PDF
    Hemolytic uremic syndrome (HUS) in adults carries a high morbidity and mortality, and its cause remains unknown despite many theories. Although familial HUS is rare, it affords a unique opportunity to elucidate underlying mechanisms that mw have relevance to acquired HUS. We have undertaken a genetic linkage study based on a candidate gene approach. A common area bounded by the markers D1S212 and D1S306, a distance of 26 cM located at 1q32 segregated with the disease (Z max 3.94). We demonstrate that the gene for factor II lies within the region. Subsequent mutation analysis of the factor II gene has revealed two mutations in patients with HUS. In an individual with the sporadic/ relapsing form of the disease we have found a mutation comprising a deletion, subsequent frame shift and premature stop codon leading to half normal levels of serum factor H. In one of the three families there is a point mutation in exon 20 causing an arginine to glycine change, which is likely to alter structure and hence function of the factor H protein. Factor H is a major plasma protein that plays a critical regulatory role in the alternative pathway of complement activation. In light of these findings and previous reports of HUS in patients with factor H deficiency, we postulate that abnormalities of factor H may be involved in the etiology of HUS

    A de novo deletion in the regulators of complement activation cluster producing a hybrid complement factor H/complement factor H-related 3 gene in atypical hemolytic uremic syndrome

    No full text
    The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H–related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology–mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise
    corecore