2,033 research outputs found

    Stability of jammed packings I: the rigidity length scale

    Full text link
    In 2005, Wyart et al. (Europhys. Lett., 72 (2005) 486) showed that the low frequency vibrational properties of jammed amorphous sphere packings can be understood in terms of a length scale, called l*, that diverges as the system becomes marginally unstable. Despite the tremendous success of this theory, it has been difficult to connect the counting argument that defines l* to other length scales that diverge near the jamming transition. We present an alternate derivation of l* based on the onset of rigidity. This phenomenological approach reveals the physical mechanism underlying the length scale and is relevant to a range of systems for which the original argument breaks down. It also allows us to present the first direct numerical measurement of l*.Comment: 8 pages, 5 figure

    Magnetization Measurements on Single Crystals of Superconducting Ba0.6K0.4BiO3

    Full text link
    Extensive measurements of the magnetization of superconducting single crystal samples of Ba0.6K0.4BiO3} have been made using SQUID and cantilever force magnetometry at temperatures ranging between 1.3 and 350 K and in magnetic fields from near zero to 27 T. Hysteresis curves of magnetization versus field allow a determination of the thermodynamic critical field, the reversibility field, and the upper critical field as a function of temperature. The lower critical field is measured seperately and the Ginzburg-Landau parameter is found to be temperature dependent. All critical fields have higher T = 0 limits than have been previously noted and none of the temperature dependence of the critical fields follow the expected power laws leading to possible alternate interpretation of the thermodynamic nature of the superconducting transition.Comment: 33 pages, 11 figures, accepted for publication in Philosophical Magazine B on 7 August 1999. This paper supplies the experimental details for the argument presented in our PRL 82 (1999) p. 4532-4535 (also at cond-mat/9904288

    Observations of the magnetic field and plasma flow in Jupiter's magnetosheath

    Get PDF
    Large scale (many minutes to 10 hours) magnetic field structures consisting predominantly of nearly north-south field direction were discovered in Jupiter's magnetosheath from the data of Voyagers 1 and 2 and Pioneer 10 during their outbound encounter trajectories. The Voyager 2 data, and that of Voyager 1 to a lesser extent, show evidence of a quasi-period of 10 hours (and occasionally 5 hours) for these structures. The north-south components of the field and plasma velocity were strongly correlated in the outbound magnetosheath as observed by Voyagers 1 and 2, and the components orthogonal to the north-south direction showed weak correlations. For both Voyager encounters the sense (positive and negative) of the north-south correlations were directly related to the direction of the ecliptic plane component of the interplanetary magnetic field using the field and plasma measurements of the non-encountering spacecraft

    The Fermi surface of CeCoIn5: dHvA

    Full text link
    Measurements of the de Haas - van Alphen effect in the normal state of the heavy Fermion superconductor CeCoIn5 have been carried out using a torque cantilever at temperatures ranging from 20 to 500 mK and in fields up to 18 tesla. Angular dependent measurements of the extremal Fermi surface areas reveal a more extreme two dimensional sheet than is found in either CeRhIn5 or CeIrIn5. The effective masses of the measured frequencies range from 9 to 20 m*/m0.Comment: 4 pages, 2 figures, submitted to PRB Rapid

    Fermi Surface Properties of Low Concentration Cex_{x}La1x_{1-x}B6_{6}: dHvA

    Get PDF
    The de Haas-van Alphen effect is used to study angular dependent extremal areas of the Fermi Surfaces (FS) and effective masses of Cex_{x}La1x_{1-x}B6% _{6} alloys for xx between 0 and 0.05. The FS of these alloys was previously observed to be spin polarized at low Ce concentration (xx = 0.05). This work gives the details of the initial development of the topology and spin polarization of the FS from that of unpolarized metallic LaB6_{6} to that of spin polarized heavy Fermion CeB6_{6} .Comment: 7 pages, 9 figures, submitted to PR

    Large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock

    Get PDF
    Large parallel (\leq 100 mV/m) and perpendicular (\leq 600 mV/m) electric fields were measured in the Earth's bow shock by the vector electric field experiment on the Polar satellite. These are the first reported direct measurements of parallel electric fields in a collisionless shock. These fields exist on spatial scales comparable to or less than the electron skin depth (a few kilometers) and correspond to magnetic field-aligned potentials of tens of volts and perpendicular potentials up to a kilovolt. The perpendicular fields are amongst the largest ever measured in space, with energy densities of ϵ0E2/nkbTe\epsilon_0 E^2/ n k_b T_e of order 10%. The measured parallel electric field implies that the electrons can be demagnetized, which may result in stochastic (rather than coherent) electron heating

    Fermi Surface Measurements on the Low Carrier Density Ferromagnet Ca1-xLaxB6 and SrB6

    Get PDF
    Recently it has been discovered that weak ferromagnetism of a dilute 3D electron gas develops on the energy scale of the Fermi temperature in some of the hexaborides; that is, the Curie temperature approximately equals the Fermi temperature. We report the results of de Haas-van Alphen experiments on two concentrations of La-doped CaB6 as well as Ca-deficient Ca1-dB6 and Sr-deficient Sr1-dB6. The results show that a Fermi surface exists in each case and that there are significant electron-electron interactions in the low density electron gas.Comment: 4 pages, 5 figures, submitted to PR
    corecore