12,123 research outputs found

    Nonlinear Propagation of Light in One Dimensional Periodic Structures

    Full text link
    We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion), the periodic structure (photonic band dispersion) and nonlinearity. We present a detailed discussion of the role of these effects individually and in concert. We derive the nonlinear coupled mode equations (NLCME) which govern the envelope of the coupled backward and forward components of the electromagnetic field. We prove the validity of the NLCME description and give explicit estimates for the deviation of the approximation given by NLCME from the {\it exact} dynamics, governed by AMLE. NLCME is known to have gap soliton states. A consequence of our results is the existence of very long-lived {\it gap soliton} states of AMLE. We present numerical simulations which validate as well as illustrate the limits of the theory. Finally, we verify that the assumptions of our model apply to the parameter regimes explored in recent physical experiments in which gap solitons were observed.Comment: To appear in The Journal of Nonlinear Science; 55 pages, 13 figure

    Localization of Electromagnetic Fields in Disordered Fano Metamaterials

    Full text link
    We present the first study of disorder in planar metamaterials consisting of strongly interacting metamolecules, where coupled electric dipole and magnetic dipole modes give rise to a Fano-type resonant response and show that positional disorder leads to light localization inherently linked to collective magnetic dipole excitations. We demonstrate that the magnetic excitation persists in disordered arrays and results in the formation of "magnetic hot-spots"

    Linear and non-linear theory of a parametric instability of hydrodynamic warps in Keplerian discs

    Get PDF
    We consider the stability of warping modes in Keplerian discs. We find them to be parametrically unstable using two lines of attack, one based on three-mode couplings and the other on Floquet theory. We confirm the existence of the instability, and investigate its nonlinear development in three dimensions, via numerical experiment. The most rapidly growing non-axisymmetric disturbances are the most nearly axisymmetric (low m) ones. Finally, we offer a simple, somewhat speculative model for the interaction of the parametric instability with the warp. We apply this model to the masing disc in NGC 4258 and show that, provided the warp is not forced too strongly, parametric instability can fix the amplitude of the warp.Comment: 14 pages, 6 figures, revised version with appendix added, to be published in MNRA

    Helical Magnetorotational Instability in Magnetized Taylor-Couette Flow

    Get PDF
    Hollerbach and Rudiger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this "helical'' MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only). We confirm their results, calculate HMRI growth rates, and show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Growth rates are small and require large axial currents. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit. Also, keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of toroidal field lowers thresholds for instability even in finite cylinders.Comment: 16 pages, 2 figures, 1 table, submitted to PR

    Quasirational models of sentencing

    Get PDF
    Cognitive continuum theory points to the middle-ground between the intuitive and analytic modes of cognition, called quasirationality. In the context of sentencing, we discuss how legal models prescribe the use of different modes of cognition. These models aim to help judges perform the cognitive balancing act required between factors indicating a more or less severe penalty for an offender. We compare sentencing in three common law jurisdictions (i.e., Australia, the US, and England and Wales). Each places a different emphasis on the use of intuition and analysis; but all are quasirational. We conclude that the most appropriate mode of cognition will likely be that which corresponds best with properties of the sentencingtask. Finally, we discuss the implications of this cognition-task correspondence approach for researchers and legal policy-makers

    Density of states in an optical speckle potential

    Full text link
    We study the single particle density of states of a one-dimensional speckle potential, which is correlated and non-Gaussian. We consider both the repulsive and the attractive cases. The system is controlled by a single dimensionless parameter determined by the mass of the particle, the correlation length and the average intensity of the field. Depending on the value of this parameter, the system exhibits different regimes, characterized by the localization properties of the eigenfunctions. We calculate the corresponding density of states using the statistical properties of the speckle potential. We find good agreement with the results of numerical simulations.Comment: 11 pages, 11 figures, revtex
    corecore