15,600 research outputs found

    Systematic study of the PDC speckle structure for quantum imaging applications

    Full text link
    Sub shot noise imaging of weak object by exploiting Parametric Down Converted light represents a very interesting technological development. A precise characterization of PDC speckle structure in dependence of pump beam parameters is a fundamental tool for this application. In this paper we present a first set of data addressed to this purpose

    The COMPLETE Survey of Outflows in Perseus

    Get PDF
    We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. We used three-dimensional isosurface models generated in RA-DEC-Velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large (~ 16 sq. deg.) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of 1 to 4 pc. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low star formation efficiencies in clusters.Comment: Published in The Astrophysical Journa

    Remarks on the structure constants of the Verlinde algebra associated to sl3sl_3

    Get PDF
    The structure constants Nλ,μμ+νN_{\lambda, \mu}^{\mu+\nu} of the sl2sl_2 Verlinde algebra as functions of μ\mu either vanish or can be expressed after a change of variable as the weight function of an irreducible representation of sl2sl_2. We give a similar formula in the sl3sl_3 case.Comment: 5 pages, AmsTeX, 1 figure available on reques

    Structure of the vacuum states in the presence of isovector and isoscalar pairing correlations

    Get PDF
    The long standing problem of proton-neutron pairing and, in particular, the limitations imposed on the solutions by the available symmetries, is revisited. We look for solutions with non-vanishing expectation values of the proton, the neutron and the isoscalar gaps. For an equal number of protons and neutrons we find two solutions where the absolute values of proton and neutrons gaps are equal but have the same or opposite sign. The behavior and structure of these solutions differ for spin saturated (single l-shell) and spin unsaturared systems (single j-shell). In the former case the BCS results are checked against an exact calculation.Comment: 19 pages, 5 postscript figure

    Two-dimensional Nanolithography Using Atom Interferometry

    Full text link
    We propose a novel scheme for the lithography of arbitrary, two-dimensional nanostructures via matter-wave interference. The required quantum control is provided by a pi/2-pi-pi/2 atom interferometer with an integrated atom lens system. The lens system is developed such that it allows simultaneous control over atomic wave-packet spatial extent, trajectory, and phase signature. We demonstrate arbitrary pattern formations with two-dimensional 87Rb wavepackets through numerical simulations of the scheme in a practical parameter space. Prospects for experimental realizations of the lithography scheme are also discussed.Comment: 36 pages, 4 figure

    Velocity Modification of Power Spectrum from Absorbing Medium

    Full text link
    Quantitative description of the statistics of intensity fluctuations within spectral line data cubes introduced in our earlier work is extended to the absorbing media. A possibility of extracting 3D velocity and density statistics from both integrated line intensity as well as from the individual channel maps is analyzed. We find that absorption enables the velocity effects to be seen even if the spectral line is integrated over frequencies. This regime that is frequently employed in observations is characterized by a non-trivial relation between the spectral index of velocities and the spectral index of intensity fluctuations. For instance when density is dominated by fluctuations at large scales, i.e. when correlations scale as r^{-\gamma}, \gamma<0, the intensity fluctuations exhibit a universal spectrum of fluctuations ~K^{-3} over a range of scales. When small scale fluctuations of density contain most of the energy, i.e. when correlations scale as r^{-\gamma}, \gamma>0, the resulting spectrum of the integrated lines depends on the scaling of the underlying density and scales as K^{-3+\gamma}. We show that if we take the spectral line slices that are sufficiently thin we recover our earlier results for thin slice data without absorption. As the result we extend the Velocity Channel Analysis (VCA) technique to optically thick lines enabling studies of turbulence in molecular clouds. In addition, the developed mathematical machinery enables a quantitative approach to solving other problems that involved statistical description of turbulence within emitting and absorbing gas.Comment: 51 page, 3 figures. Accepted to Astrophysical Journa

    Jet Deflection via Cross winds: Laboratory Astrophysical Studies

    Full text link
    We present new data from High Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydro-dynamic regime. MHD plasma code simulations of the experiments are able to recover the deflection behaviour seen in the experiments. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. Fitting the observed jet deflections to quadratic trajectories predicted by these models allows us to recover a set of plasma parameters consistent with the data. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experimentsComment: Submitted to ApJ. For a version with figures go to http://web.pas.rochester.edu/~afrank/labastro/CW/Jet-Wind-Frank.pd

    Missing and Quenched Gamow Teller Strength

    Full text link
    Gamow-Teller strength functions in full (pf)8(pf)^{8} spaces are calculated with sufficient accuracy to ensure that all the states in the resonance region have been populated. Many of the resulting peaks are weak enough to become unobservable. The quenching factor necessary to bring into agreement the low lying observed states with shell model predictions is shown to be due to nuclear correlations. To within experimental uncertainties it is the same that is found in one particle transfer and (e,e') reactions. Perfect consistency between the observed 48Ca(p,n)48Sc^{48}Ca(p,n)^{48}Sc peaks and the calculation is achieved by assuming an observation threshold of 0.75\% of the total strength, a value that seems typical in several experimentsComment: 11 pages, 6 figures avalaible upon request, RevTeX, FTUAM-94/0
    • …
    corecore