977 research outputs found

    Critical Cultural Awareness: Contributions To A Globalizing Psychology

    Get PDF
    The number of psychologists whose work crosses cultural boundaries is increasing. Without a critical awareness of their own cultural grounding, they risk imposing the assumptions, concepts, practices, and values of U.S.-centered psychology on societies where they do not fit, as a brief example from the 2004 Indian Ocean tsunami shows. Hermeneutic thinkers offer theoretical resources for gaining cultural awareness. Culture, in the hermeneutic view, is the constellation of meanings that constitutes a way of life. Such cultural meanings-especially in the form of folk psychologies and moral visions-inevitably shape every psychology, including U.S. psychology. The insights of hermeneutics, as well as its conceptual resources and research approaches, open the way for psychological knowledge and practice that are more culturally situated

    Concadia: Towards Image-Based Text Generation with a Purpose

    Full text link
    Current deep learning models often achieve excellent results on benchmark image-to-text datasets but fail to generate texts that are useful in practice. We argue that to close this gap, it is vital to distinguish descriptions from captions based on their distinct communicative roles. Descriptions focus on visual features and are meant to replace an image (often to increase accessibility), whereas captions appear alongside an image to supply additional information. To motivate this distinction and help people put it into practice, we introduce the publicly available Wikipedia-based dataset Concadia consisting of 96,918 images with corresponding English-language descriptions, captions, and surrounding context. Using insights from Concadia, models trained on it, and a preregistered human-subjects experiment with human- and model-generated texts, we characterize the commonalities and differences between descriptions and captions. In addition, we show that, for generating both descriptions and captions, it is useful to augment image-to-text models with representations of the textual context in which the image appeared.Comment: Proceedings of EMNLP 202

    Dosimetric Evaluation of PSMA PET-Delineated Dominant Intraprostatic Lesion Simultaneous Infield Boosts

    Get PDF
    Purpose: Prostate cancer is multifocal. However, there often exists a single dominant focus in the gland responsible for driving the biology of the disease. Dose escalation to the dominant lesion is a proposed strategy to increase tumor control. We applied radiobiological modeling to evaluate the dosimetric feasibility and benefit of dominant intraprostatic lesion simultaneous in-field boosts (DIL-SIB) to the gross tumor volume (GTV), defined using a novel molecular positron emission tomography (PET) probe (18F-DCFPyL) directed against prostate specific membrane antigen (PSMA). Methods and Materials: Patients with clinically localized, biopsy-proven prostate cancer underwent preoperative [ F]-DCFPyL PET/computed tomography (CT). DIL-SIB plans were generated by importing the PET/CT into the RayStation treatment planning system. GTV-PET for the DIL-SIB was defined by the highest %SUVmax (percentage of maximum standardized uptake value) that generated a biologically plausible volume. Volumetric arc–based plans incorporating prostate plus DIL-SIB treatment were generated. Tumor control probability (TCP) and normal tissue complication probability (NTCP) with fractionation schemes and boost doses specified in the FLAME (Investigate the Benefit of a Focal Lesion Ablative Microboost in Prostate Cancer; NCT01168479), PROFIT (Prostate Fractionated Irradiation Trial; NCT00304759), PACE (Prostate Advances in Comparative Evidence; NCT01584258), and hypoFLAME (Hypofractionated Focal Lesion Ablative Microboost in prostatE Cancer 2.0; NCT02853110) protocols were compared. Results: Comparative DIL-SIB plans for 6 men were generated from preoperative [ F]-DCFPyL PET/CT. Median boost GTV volume was 1.015 cm (0.42-1.83 cm ). Median minimum (D99%) DIL-SIB dose for F35 , F20 , F5 , and F5 were 97.3 Gy, 80.8 Gy, 46.5 Gy, and 51.5Gy. TCP within the GTV ranged from 84% to 88% for the standard plan and 95% to 96% for the DIL-SIB plans. Within the rest of the prostate, TCP ranged from 89% to 91% for the standard plans and 90% to 92% for the DIL-SIB plans. NTCP for the rectum NTCP was similar for the DIL-SIB plans (0.3%-2.7%) compared with standard plans (0.7%-2.6%). Overall, DIL-SIB plans yielded higher uncomplicated TCP (NTCP, 90%-94%) versus standard plans (NTCP, 83%-85%). Conclusions: PSMA PET provides a novel approach to define GTV for SIB-DIL dose escalation. Work is ongoing to validate PSMA PET-delineated GTV through correlation to coregistered postprostatectomy digitized histopathology. 18 18 3 3 BS BS BS BS

    The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes

    Full text link
    We use numerical simulations to study the evolution of triaxial elliptical galaxies with central black holes. In contrast to earlier numerical studies which used galaxy models with central density ``cores,'' our galaxies have steep central cusps, like those observed in real ellipticals. As a black hole grows in these cuspy triaxial galaxies, the inner regions become rounder owing to chaos induced in the orbit families which populate the model. At larger radii, however, the models maintain their triaxiality, and orbital analyses show that centrophilic orbits there resist stochasticity over many dynamical times. While black hole induced evolution is strong in the inner regions of these galaxies, and reaches out beyond the nominal ``sphere of influence'' of a black hole, our simulations do not show evidence for a rapid {\it global} transformation of the host. The triaxiality of observed elliptical galaxies is therefore not inconsistent with the presence of supermassive black holes at their centers.Comment: 15 pages, 7 figures (1 color). Accepted for publication in Ap

    Integration of the Total Lightning Jump Algorithm into Current Operational Warning Environment Conceptual Models

    Get PDF
    Key points that this analysis will begin to address are: 1)What physically is going on in the cloud when there is a jump in lightning? - Updraft variations, ice fluxes. 2)How do these processes fit in with severe storm conceptual models? 3)What would this information provide an end user (i.e., the forecaster)? - Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi-Doppler derived physical relationships 4) How do we best transistionthis algorithm into the warning decision process. The known relationship between lightning updraft strength/volume and precipitation ice mass production can be extended to the concept of the lightning jump. Examination of the first lightning jump times from 329 storms in Schultz et al. shows an increase in the mean reflectivity profile and mixed phase echo volume during the 10 minutes prior to the lightning jump. Limited dual-Doppler results show that the largest lightning jumps are well correlated in time with increases in updraft strength/volume and precipitation ice mass production; however, the smaller magnitude lightning jumps appear to have more subtle relationships to updraft and ice mass characteristics

    Help or hinder: Bayesian models of social goal inference

    Get PDF
    Everyday social interactions are heavily influenced by our snap judgments about others’ goals. Even young infants can infer the goals of intentional agents from observing how they interact with objects and other agents in their environment: e.g., that one agent is ‘helping’ or ‘hindering’ another’s attempt to get up a hill or open a box. We propose a model for how people can infer these social goals from actions, based on inverse planning in multiagent Markov decision problems (MDPs). The model infers the goal most likely to be driving an agent’s behavior by assuming the agent acts approximately rationally given environmental constraints and its model of other agents present. We also present behavioral evidence in support of this model over a simpler, perceptual cue-based alternative.United States. Army Research Office (ARO MURI grant W911NF-08-1-0242)United States. Air Force Office of Scientific Research (MURI grant FA9550-07-1-0075)National Science Foundation (U.S.) (Graduate Research Fellowship)James S. McDonnell Foundation (Collaborative Interdisciplinary Grant on Causal Reasoning

    Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Get PDF
    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm
    corecore