11 research outputs found

    An update on MRMAssayDB: a comprehensive resource for targeted proteomics assays in the community

    Get PDF
    Precise multiplexed quantification of proteins in biological samples can be achieved by targeted proteomics using multiple or parallel reaction monitoring (MRM/PRM). Combined with internal standards, the method achieves very good repeatability and reproducibility enabling excellent protein quantification and allowing longitudinal and cohort studies. A laborious part of performing such experiments lies in the preparation steps dedicated to the development and validation of individual protein assays. Several public repositories host information on targeted proteomics assays, including NCI's Clinical Proteomic Tumor Analysis Consortium assay portals, PeptideAtlas SRM Experiment Library, SRMAtlas, PanoramaWeb, and PeptideTracker, with all offering varying levels of details. We introduced MRMAssayDB in 2018 as an integrated resource for targeted proteomics assays. The Web-based application maps and links the assays from the repositories, includes comprehensive up-to-date protein and sequence annotations, and provides multiple visualization options on the peptide and protein level. We have extended MRMAssayDB with more assays and extensive annotations. Currently it contains >828 000 assays covering >51 000 proteins from 94 organisms, of which >17 000 proteins are present in >2400 biological pathways, and >48 000 mapping to >21 000 Gene Ontology terms. This is an increase of about four times the number of assays since introduction. We have expanded annotations of interaction, biological pathways, and disease associations. A newly added visualization module for coupled molecular structural annotation browsing allows the user to interactively examine peptide sequence and any known PTMs and disease mutations, and map all to available protein 3D structures. Because of its integrative approach, MRMAssayDB enables a holistic view of suitable proteotypic peptides and commonly used transitions in empirical data. Availability: http://mrmassaydb.proteincentre.com.Proteomic

    Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues

    No full text
    The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 mu m thick FF tissues, and 4 mu m thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm(2) and 15 mu m thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 mu m thick FFPE tissue with the average of 270 protein identifications (1 mm(2)), similar to the results on 4 mu m thick FF. Moreover, we found that temperature increases during incubation with urea on 4 mu m thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.Proteomic

    Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues

    Get PDF
    The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 μm thick FF tissues, and 4 μm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm(2) and 15 μm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 μm thick FFPE tissue with the average of 270 protein identifications (1 mm(2)), similar to the results on 4 μm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 μm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides

    Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients

    No full text
    The opportunistic pathogen Pseudomonas aeruginosa undergoes genetic change during chronic airway infection of cystic fibrosis (CF) patients. One common change is a mutation inactivating lasR, which encodes a transcriptional regulator that responds to a homoserine lactone signal to activate expression of acute virulence factors. Colonies of lasR mutants visibly accumulated the iridescent intercellular signal 4-hydroxy-2-heptylquinoline. Using this colony phenotype, we identified P. aeruginosa lasR mutants that emerged in the airway of a CF patient early during chronic infection, and during growth in the laboratory on a rich medium. The lasR loss-of-function mutations in these strains conferred a growth advantage with particular carbon and nitrogen sources, including amino acids, in part due to increased expression of the catabolic pathway regulator CbrB. This growth phenotype could contribute to selection of lasR mutants both on rich medium and within the CF airway, supporting a key role for bacterial metabolic adaptation during chronic infection. Inactivation of lasR also resulted in increased β-lactamase activity that increased tolerance to ceftazidime, a widely used β-lactam antibiotic. Loss of LasR function may represent a marker of an early stage in chronic infection of the CF airway with clinical implications for antibiotic resistance and disease progression

    Longitudinal Plasma Proteomics Analysis Reveals Novel Candidate Biomarkers in Acute COVID-19

    No full text
    The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437.Proteomic

    Longitudinal Plasma Proteomics Analysis Reveals Novel Candidate Biomarkers in Acute COVID-19

    No full text
    The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437

    Proteomic evolution from acute to post-COVID-19 conditions

    Get PDF
    Many COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437)Proteomic
    corecore