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ABSTRACT: Many COVID-19 survivors have post-COVID-19 conditions, and females are at
a higher risk. We sought to determine (1) how protein levels change from acute to post-
COVID-19 conditions, (2) whether females have a plasma protein signature different from that
of males, and (3) which biological pathways are associated with COVID-19 when compared to
restrictive lung disease. We measured protein levels in 74 patients on the day of admission and
at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction
monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital
capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were
measured by routine pulmonary function testing. Proteins associated with six key lipid-related
pathways increased from admission to 3 and 6 months; conversely, proteins related to innate
immune responses and vasoconstriction-related proteins decreased. Multiple biological
functions were regulated differentially between females and males. Concentrations of eight
proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732−
0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676−0.737) for DLCO, %. Lipid biology may drive
evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased
over that period. (ProteomeXchange identifiers: PXD041762, PXD029437)
KEYWORDS: COVID-19, post-COVID-19 conditions, restrictive lung disease, targeted quantitative proteomics

■ INTRODUCTION
A significant number of individuals who have recovered from
COVID-19 continue to experience symptoms even after their
acute illness has resolved, a condition commonly referred to as
long COVID, long-haul COVID-19, or post-COVID-19
conditions. About 15−35% of acute COVID-19 survivors
have post-COVID-19 conditions,1 which are characterized by
impaired multisystem2−8 outcomes. Millions of cases of post-
COVID-19 conditions have occurred globally with estimates
from the U.K. and USA ranging from 149 to 37%10 of COVID-
19 cases. The most common symptoms are fatigue, shortness
of breath, and cognitive dysfunction.11 Post-COVID-19
conditions can occur after hospitalization for acute COVID-
1912−16 as well as after episodes of community acute COVID-
19 that do not require hospitalization.8,17−19 Some studies of
post-COVID-19 conditions have evaluated only outpatients
who developed post-COVID-19 conditions after being released
from the hospital, while other studies involved patients
hospitalized for acute COVID-19 who later developed post-
COVID-19 conditions.2−7,10,20−25

The investigation of blood biomarkers that can predict the
development and severity of post-COVID-19 conditions
remains relatively under-researched. A few promising results
have been observed through metabolomics26 and tran-
scriptomics27 analyses, revealing unique metabolic responses
that persist in individuals with post-COVID-19 conditions.
Thus, it is logical to develop hypotheses that acute-phase
protein levels may differ markedly between acute COVID-19
and healthy controls, which therefore might shed light on
possible diagnostic and therapeutic targets for post-COVID-19
conditions.28−30 In this context, proteomics stands out as a
suitable tool to investigate the dysregulated proteins.
In the current work, we sought to address three questions

that remain unresolved in the post-COVID-19 conditions.
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Table 1. Baseline Characteristics of Patients Who Were Admitted for Acute COVID-19 and Evaluated at Hospital Admission
and at 3 and 6 Monthsa

variable all (n = 74) male (n = 48) female (n = 26) P

sex, n (%)
male 48 (64.9) 48 (100.0) 0 (0.0)
female 26 (35.1) 0 (0.0) 26 (100.0)
age, mean (SD) 59.6 (15.7) 61.1 (15.6) 57.0 (15.9) 0.282
comorbidities, n (%)
chronic cardiac disease 16/74 (21.6) 11/48 (22.9) 5/26 (19.2) 0.713
chronic kidney disease 5/74 (6.8) 5/48 (10.4) 0/26 (0.0) 0.155
hypertension 31/73 (42.5) 23/47 (48.9) 8/26 (30.8) 0.133
diabetes 18/74 (24.3) 10/48 (20.8) 8/26 (30.8) 0.342
chronic pulmonary disease (not asthma) 3/73 (4.1) 2/48 (4.2) 1/25 (4.0) 1.000
asthma 9/74 (12.2) 3/48 (6.3) 6/26 (23.1) 0.035
liver disease 2/74 (2.7) 2/48 (4.2) 0/26 (0.0) 0.538
chronic neurological disorder 4/74 (5.4) 1/48 (2.1) 3/26 (11.5) 0.121
malignant neoplasm 3/73 (4.1) 2/47 (4.3) 1/26 (3.8) 1.000
chronic hematologic disease 1/74 (1.4) 1/48 (2.1) 0/26 (0.0) 1.000
AIDS/HIV 3/68 (4.4) 3/45 (6.7) 0/23 (0.0) 0.546
obesity (as defined by clinical staff) 6/74 (8.1) 2/48 (4.2) 4/26 (15.4) 0.176
rheumatologic disorder 9/74 (12.2) 4/48 (8.3) 5/26 (19.2) 0.171
dementia 0/73 (0.0) 0 (0.0) 0 (0.0)
malnutrition 0/74 (0.0) 0 (0.0) 0 (0.0)
admitted to ICU on hospital admission day, n (%) 12 (16.4) 10 (21.3) 2 (7.7) 0.134
organ support on the admission day
invasive mechanical ventilation, n (%) 6 (8.1) 4 (8.3) 2 (7.7) 1.000
RRT or dialysis, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
vasopressors, n (%) 4 (5.4) 3 (6.3) 1 (3.8) 1.000
temperature (°C), mean (SD)* 37.5 (0.9) 37.5 (0.9) 37.3 (0.8) 0.328
heart rate (beats per minute), mean (SD)* 96.2 (19.3) 95.9 (21.6) 96.8 (13.9) 0.855
respiratory rate (breaths per minute), mean (SD)* 24.9 (7.4) 25.3 (8.0) 24.4 (6.3) 0.631
sBP, mean (SD)* 131.1 (19.7) 133.2 (20.9) 126.9 (16.7) 0.193
dBP, mean (SD)* 75.6 (13.2) 76.1 (12.8) 74.7 (14.1) 0.670
oxygen saturation (SaO2; %), mean (SD)* 91.3 (5.9) 89.9 (6.2) 93.8 (4.4) 0.006
oxygen status, n (%) 0.749
room air 45/72 (62.5) 30/47 (63.8) 15/25 (60.0)
oxygen therapy 27/72 (37.5) 17/47 (36.2) 10/25 (40.0)
WBC count (×103/μL), median (IQR)* 6.0 (5.0, 8.2) 6.2 (5.0, 9.0) 5.9 (4.6, 7.5) 0.572
hemoglobin (g/L), median (IQR)* 139 (132, 147) 143 (135, 155) 134 (121, 145) 0.003
creatinine (μmol/L), median (IQR)* 84 (68, 104) 93 (76, 112) 68 (57, 80) <0.001
potassium (mEq/L), median (IQR)* 3.8 (3.6, 4.1) 3.8 (3.6, 4.0) 3.8 (3.5, 4.2) 0.798
ALT (U/L), median (IQR) 49 (27, 85) 45 (24, 90) 50 (27, 71) 0.756
missing, n 7 6 1
AST (U/L), median (IQR) 66 (37, 97) 70 (34, 96) 62 (40.5, 108) 0.704
missing, n 29 19 10
platelets (×109/L), median (IQR)* 200 (171, 252) 195 (158, 235) 240 (191, 272) 0.004
D-dimer level (ng/mL), median (IQR) 732 (503, 1199) 699 (488, 1073) 896 (538, 1367) 0.464
missing, n 28 20 8
bilirubin (μmol/L), median (IQR) 10.0 (8.0, 12.0) 10.0 (9.0, 12.0) 8.0 (7.0, 11.0) 0.046
missing, n 11 7 4
INR, median (IQR) 1.10 (1.00, 1.20) 1.10 (1.00, 1.20) 1.20 (1.00, 1.20) 0.365
missing, n 16 10 6
troponin (ng/mL), median (IQR) 0.0200 (0.0120, 0.0200) 0.0200 (0.0120, 0.0200) 0.0200 (0.0080, 0.0200) 0.694
missing, n 12 8 4
Glasgow coma scale 0.134
unknown 12 9 3
13−15 60 (96.8) 39 (100.0) 21 (91.3)
9−12 2 (3.2) 0 (0.0) 2 (8.7)
8 or less 0 (0.0) 0 (0.0) 0 (0.0)
mean arterial pressure (mmHg) 86 (75, 95) 88.5 (77, 99) 81 (75, 89) 0.062
missing, n 23 14 9
FiO2 (%), median (IQR) 30 (28, 40) 30 (28, 47.5) 30 (21, 36) 0.326
missing, n 12 8 4
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First, it is unknown whether and to what extent plasma protein
levels change from the time of hospital admission to few
months later: in our work 3 to 6 months later. Second, females
have a higher risk of post-COVID-19 conditions than males,21

but the mechanisms behind this observed outcome remain
unclear. Third, restrictive lung disease is an important
condition leading to dyspnea and fatigue, two of the most
common symptoms observed under post-COVID-19 con-
ditions. However, the causes of restrictive lung disease in post-
COVID-19 are still uncertain.
The objective of our study was to use quantitative targeted

plasma proteomics with an internal standard to quantify
plasma proteins and attempt to address these three questions.
In addition, our goal was also to perform functional analyses to
highlight the molecular functions and biological processes
associated with proteins whose abundances change in the three
scenarios we studied. To the best of our knowledge, there are
no proteomic studies characterizing the latter.

■ METHODS

Experimental Design and Rationale

This study was approved by the Providence Health Care and
University of British Columbia Human Research Committee
(Approval No. H20-00600) and by each of the contributing
clinical sites. Anonymized clinical data and use of discarded
plasma from clinical blood tests were deemed low risk, and
informed consent was deemed not necessary for this research.
ARBs CORONA I is a multicenter cohort of patients in

Canada hospitalized for acute COVID-19.28,31,32 Inclusion
criteria for ARBs CORONA I were patients over 18 years of
age who had confirmed SARS-CoV-2 infection (according to a
local hospital or provincial laboratories with clinically approved
laboratory testing for SARS-CoV-2) who were admitted to the
hospital. ARBs I exclusion criteria were acute COVID-19
readmissions, Emergency Department visits only, and
admissions in which COVID-19 was not the most responsible
diagnosis.
Surviving patients hospitalized for acute COVID-19 at St.

Paul’s Hospital and Vancouver General Hospital (Vancouver,
Canada) who were in the ARBs CORONA I study were
referred to the British Columbia provincial Post-COVID-19
Interdisciplinary Clinical Care Network (PC-ICCN) at 3 and 6
months after hospital admission for acute COVID-19.33

Patients in the current study were a subset for whom there
was plasma available for research purposes at hospital
admission and at 3 and 6 months.
Baseline Characteristics of COVID-19 Patients

Baseline characteristics included age, sex, and the presence of a
previous (i.e., preacute COVID-19) diagnosis of heart failure,
hypertension, chronic kidney disease, and diabetes (Table 1).
Heart rate, respiratory rate, temperature, blood pressure,
arterial oxygen saturation (SaO2), serum hemoglobin, crea-
tinine, alanine transaminase (ALT), aspartate transaminase
(AST), bilirubin, D-dimer, troponin, platelet count, white
blood cell (WBC) count, Glasgow coma score (GCS), and use

of vasopressors, invasive ventilation, and renal replacement
therapy (RRT) were recorded on the day of admission.
Acute COVID-19 severity was based on a modified version

of the 4C mortality score34 that included in the primary
publication age, sex, comorbidities, respiratory rate, SpO2,
GCS, and urea and C-reactive protein. The GCS and C-
reactive protein were excluded from our calculation of a
modified 4C mortality score because data were not
consistently captured for the GCS and not at all for C-reactive
protein. The definition of comorbidities was based on the
predefined items in ARBs CORONA I31 instead of those
defined by the Charlson comorbidity index as used in the
original 4C mortality score. Urea was not captured in our
study, and so the serum creatinine level was used to measure
renal function at three levels comparable to urea as follows:
normal: <110 μ/L; moderate elevation: 110−220 μ/L; and
more than moderate elevation: >220 μ/L.
Post-COVID-19 Condition Outcomes

Patients who were discharged from the hospital after acute
COVID-19 were referred to a British Columbia provincial
network of five Post-COVID-19 condition clinics.33 For the
current study, patients were evaluated at St. Paul’s Hospital
and Vancouver General Hospital post-COVID-19 condition
clinics. We chose two pulmonary function tests used to
diagnose restrictive lung disease, percent-predicted vital
capacity (FVC%), and percent-predicted diffusing capacity of
the lung for carbon monoxide (DLCO%) as outcomes for
association of proteomics with post-COVID-19 condition
restrictive lung disease. Both respiratory muscle weakness and
lung disease can cause post-COVID condition respiratory
symptoms, such as breathlessness. We chose FVC% and
DLCO% because FVC% can be altered by respiratory muscle
weakness or lung disease, whereas DLCO% is altered by lung
disease only.
Measurement of Plasma Protein Levels Using Targeted
Quantitative Proteomics

The multiple reaction monitoring (MRM) assays used were
developed and validated at the University of Victoria
Proteomics Centre, Victoria, BC, Canada,35−40 and include
stable isotope-labeled internal standard (SIS) peptides for 269
proteins. The MRM assays are characterized according to the
Tier 2 Clinical Proteomic Tumor Analysis Consortium
(CPTAC) guidelines41 and were applied previously for analysis
of COVID-19 plasma samples.28,31,42 A list of the peptides and
proteins is provided in the Supporting Information, Table S1.
The concentrations of endogenous proteotypic peptides were
determined by comparing their responses in the mass
spectrometer to the responses of the heavy-labeled internal
standard peptides that had been spiked into the sample, as
described below. The order of the sample measurement was
randomized using R package Omixer.43

The sample digest preparation protocol was developed
previously44 and was optimized and used in multiple follow-up
studies.36,39,45−50 In our current work, we used a urea-based
protocol in which 10 μL of plasma was diluted with 20 μL of 9

Table 1. continued

variable all (n = 74) male (n = 48) female (n = 26) P

4C mortality score, median (IQR) 7 (5, 10) 8 (5, 11) 5 (4, 8) 0.023
missing, n 8 3 5

aThe p-value was based on the Chi-square test, Fisher’s exact text, t-test, or Wilcoxon rank-sum test as appropriate. *Missing for up to two patients.
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M urea/20 mM dithiothreitol and incubated for 30 min at 37
°C to achieve denaturation and reduction. The samples were
alkylated with iodoacetamide (40 mM final concentration) for
30 min at room temperature in the dark, and then, the samples
were diluted 10-fold in 100 mM Tris prior to tryptic digestion.
Digestion was carried out at 10:1 substrate/enzyme ratio using
tosyl phenylalanyl chloromethyl ketone (TPCK)-treated
trypsin (Worthington) for 18 h at 37 °C. After digestion,
samples were acidified with aqueous 1% formic acid (FA), and
a chilled SIS peptide mixture was added. Samples were
concentrated via solid-phase extraction (SPE; 10 mg of Oasis
HLB cartridges; Waters), using the manufacturer’s recom-
mended protocol. The SPE column was conditioned with
100% methanol (1 mL), followed by washing with 99.9%
H2O/0.1% FA (1 mL); the sample (diluted to 1 mL using
99.9% H2O/0.1% FA) was then loaded onto the column,
followed by washing two times with water (1 mL each).
Finally, the sample was eluted with 55% acetonitrile (ACN)/
0.1% FA (300 μL) and lyophilized to dryness. The dried
samples were rehydrated in 0.1% FA to 1 μg/μL for liquid
chromatography (LC)/MRM-MS analysis. The samples were
separated online with a reversed-phase−ultrahigh-performance
liquid chromatography (RP-UHPLC) column (Eclipse-
PlusC18 RRHD 150 mm × 2.1 mm i.d., 1.8 μm particle
diameter; Agilent) maintained at 50 °C. Peptide separations
were performed at 0.4 mL/min in a 56 min run, via a multistep
LC gradient. The solvents were the aqueous mobile phase
(solvent A), which contained 0.1% formic acid in LC-MS-
grade water, and the organic mobile phase (solvent B), which
contained 0.1% formic acid in LC-MS-grade acetonitrile. The
exact gradient was as follows (time point in minutes, solution B
%): 0 min, 2%; 2 min, 7%; 50 min, 30%; 53 min, 45%, 53.5
min, 80%; 55.5 min, 80%; and 56 min, 2%. A postcolumn
equilibration of 4 min was used after each sample analysis. The
LC system was interfaced to a triple-quadrupole mass
spectrometer (Agilent 6490) via a standard-flow electrospray
ionization (ESI) source, operated in positive ion mode. The
MRM acquisition parameters employed for the quantitation
were as follows: 3500 V capillary voltage, 300 V nozzle voltage,
11 L/min sheath gas flow at a temperature of 250 °C, 15 L/
min drying gas flow at a temperature of 150 °C, 30 psi
nebulizer gas pressure, 380 V fragmentor voltage, 5 V cell
accelerator potential, and unit mass resolution in the first and
third quadrupoles. The peptide-specific collision energy (CE)
values for optimal peptide collision-induced dissociation had
previously been determined experimentally. The exact CE
value for each peptide is available from PeptideTracker38

(http://peptidetracker.proteincentre.com/).
Previous Datasets for Additional Comparison

In the current work, we included the proteomic plasma profiles
of healthy controls from our previous work28 as a reference for
any innate differences in the plasma protein levels between
females and males. The samples were analyzed as part of the
previous work using the same MRM analytical method and
protein panel. Six healthy female individuals aged 19−50 years
of age (mean: 41.5) and eight healthy males aged 18−57 years
(mean: 34.5) of the same background were included.
Sensitivity Analyses for Pre-existing Lung Disease

Pre-existing lung disease could affect the interpretation of the
association between proteomic analyses and pulmonary
function (FVC, %, and DLCO, %). We therefore performed
four different exclusion/inclusion analyses and compared the

results based on change in c-statistics when evaluating
associations of protein levels with FVC, %, or DLCO, %, i.e.,
change in the area under the receiver operating curve in a
cross-validated regression model for discrimination. The model
uses proteins differentiated in their abundance to discriminate
between patients with FVC, %, or DLCO, % values above or
below 80% because 80% is the usual threshold of normal. The
four analyses were (1) results from all patients, (2) analysis
excluding the nine patients who had asthma, (3) analysis that
excluded only the three patients who had chronic pulmonary
disease, and (4) analysis in which all 12 of the aforementioned
patients with pre-existing pulmonary condition were excluded.
Data Processing

Skyline was used to inspect the peptide response peaks and to
ensure accurate selection, retention time, integration, and
uniformity of peak shape for the endogenous and internal
standard peptide signals.51 For each peptide, the relative peak
area ratio of endogenous to heavy-labeled internal standard
peptide was calculated. This ratio and the known concen-
tration of the internal standard peptide were used to calculate
the concentration of the endogenous peptide in the sample by
comparison to a standard curve generated in the pooled
sample. The criteria used for the standard curve regression
analysis were 1/x2 regression weighting, <15% deviation in a
given level’s precision and accuracy for each concentration
level, and 20% at the lower limit of quantification.
Statistical Analyses

Protein concentrations are reported in fmol/μL; other clinical
descriptive and data are described as number (percent), mean
± standard deviation, or median (interquartile range), as
appropriate. The unsupervised cluster analysis was performed
using the protein concentrations determined. We used the
complete distance to perform the clustering on the scaled and
centered concentration values. Visualization of the data using
heatmaps was performed after centering and scaling of the
determined protein concentrations. Differences between
female and male healthy controls were tested using the
Wilcoxon rank-sum test. p-values were adjusted with the
Benjamini−Hochberg method to account for multiple testing.
Fold changes were calculated on a base-2 logarithmic scale
after dividing the individual protein concentrations by the
corresponding reference abundance of the protein. Statistical
significance was defined by a p-value less than 0.05 after
correction for multiple testing. Significant fold change was set
to detect a 25% increase or decrease in protein abundance,
which is based on the variation in our overall MRM
experiment and is determined from QC samples that have
been analyzed multiple times in prior studies and in the current
work. The value reflects that approximately 70% of the
quantified proteins have CVs less than 25%. The baseline in
our longitudinal comparisons was the corresponding patient
protein abundance at admission. Partitional time series
clustering with the Manhattan distance was used to identify
protein profile clusters over time. For the longitudinal analysis
and differences between female and male patients, p-values
were asserted from two ways analysis of variance (ANOVA)
and adjusted with the Benjamini−Hochberg method to
account for multiple testing. Significantly differentiated
proteins as well as proteins belonged to identified time series
clusters considered in functional analyses, which were
performed using Cytoscape52 and the Cytoscape plugin
GeneMANIA53 to understand the pathways that were
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significantly perturbed in the groups. Top pathways that were
specific to each comparison were selected for further analysis
as well as static figures reported here, while a link to the full
interactive visualization is provided in the results and the
Supporting Information Materials. Differences in protein
abundances between groups at admission, specifically between
patients with forced vital capacity (FVC, %) and lung capacity
for carbon monoxide (DLCO, %) percentage values above and
below the threshold of 80%, were tested using the Wilcoxon
rank-sum test. Prediction was performed using regression
analysis on proteins with a p-value less than 0.05 and a log fold
change of 0.3. Validation was performed using cross-validation
to estimate c-statistics and associated confidence intervals and
was performed using 30/70% training and testing sets that
were drawn randomly from the samples and repeated 100
times. All data analysis and visualization were performed using
R (version 4.2.1),54 Cytoscape (version 3.8.2), and its
GeneMANIA (version 3.5.2) plugin.52,53

■ RESULTS

Sample Cohort
The 74 patients with COVID-19 were admitted to the hospital
for acute COVID-19 between March 5, 2020 and April 1, 2021
(Table 1). Patients had a mean age of 59.6 years with a
standard deviation of 16 years. Out of all patients, 48 were
males and 26 were females. Most common comorbidities were
hypertension (42.5%), diabetes (24%), and chronic cardiac
disease (22%). Only nine patients (12%) had asthma and three
(4%) had chronic pulmonary disease. Plasma sampling
occurred on admission and again at 3 and 6 months. The
patients in the current study were similar in sex distribution to
the overall British Columbia Post-COVID-19�Interdiscipli-
nary Clinical Care Network55 (Table S2).

MRM-Based Proteomics and Plasma Protein Signatures

We determined protein concentrations in blood plasma
samples obtained from acute COVID-19 patients at admission
and after 3 and 6 months using MRM with internal standards.
The approach we used is well-suited for studies like ours that
are longitudinal, multicenter studies because it references
measured peptide intensities to the signals of spiked-in internal
standards, allowing the absolute quantification of target
proteins via their peptide surrogates. In previous work, it has
been shown that plasma proteomics can identify up to 900
proteins;56 however, quantification also relies on additional
quality criteria, namely that acceptable determined concen-
trations had to be within the dynamic range of a standard curve
that is generated as part of the experiment. We used a
quantitative proteomic panel for 269 plasma proteins that we
had thoroughly validated in previous studies.39,57,58 The panel
included internal standards for all proteins (Table S1) and has
been previously characterized as showing good reproduci-
bility.58 The panel typically quantifies 160−175 proteins
depending on the quality of the plasma samples and the
anticoagulant used.58 In the current study, we were able to
detect 192 proteins, of which 172 were quantified; no
imputation was performed, and we used a nonparametric test
for all comparisons. We considered a protein to be quantifiable
if its determined concentrations in 90% of the samples were
above the lower limit of quantification (LLOQ), which was
determined using regression analysis and a standard curve
generated in the same experiment.36

A heatmap of proteins at hospital admission and 3 and 6
months is shown in Figure 1. The horizontal hierarchical
clustering divided patients into several unique and distinct
subgroups based on their protein signatures linked in clusters.

Figure 1. Heatmap of the plasma proteomic expression in patients who were admitted for acute COVID-19 and were evaluated at hospital
admission and at 3 and 6 months.
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The clustering guiding the orders did not show any association
with the measurement batch.
Longitudinal Analyses of Proteomics from Hospital
Admission to Six Months

Only a few proteins showed significant changes in their
determined abundances as acute COVID-19 evolved into post-
COVID-19 conditions. We did, however, identify two major

trajectories of proteins whose concentrations changed
significantly: low-to-high and high-to-low transitions of protein
concentration from admission to 3 and 6 months. There were
six unique clusters of proteins; four of these increased from
hospital admission to 3 and 6 months, while two decreased
during this time (Figures 2 and 3). In the clusters that
increased from hospital admission to 3 and 6 months, key
lipid-related pathways increased, including regulation of plasma

Figure 2. Functional analysis of the proteins showed an increase in abundance from admission for acute COVID-19 to 3 and 6 months. (A−D)
Four trends of protein clusters that had increased in their abundances from admission to 3 and 6 months. The trends in abundances are shown in
relation to the concentration measured at admission and depicted in the plots in the Log2 fold change. The four trends identify proteins with
different levels of fold change increase as shown on the vertical axis. The lists of proteins in each cluster are provided in the Supporting Information
in Figure S1. E shows the results of the functional analysis as the association network of the proteins. Nodes are the proteins, edges are associations
between the proteins colored according to the type (coexpression, colocalization, genetic interactions, pathway, physical interactions, predicted, or
shared protein domains), and functions are mapped to the node in color as in the legend. The dynamic network can be accessed via the following
link https://tinyurl.com/56wbzzyv (the full link is provided in the Supporting Information links).
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lipoprotein particle levels, triglyceride-rich plasma lipoprotein
particles, triglyceride-rich lipoprotein particle remodeling,
sterol transport, cholesterol transport, and regulation of lipid
localization (Figure 2). Proteins and functions that decreased
from admission to 3 and 6 months included many immune
responses, specifically proteins related to leukocytes, structural
and binding properties including tertiary granules, complement
binding, opsonin binding, myeloid leukocyte migration, and
positive regulation of phagocytosis (Figure 3). There were
decreases in the concentrations of proteins related to
vasoconstriction and negative regulation of the blood vessel
diameter.

Proteomic Signature in Post-COVID-19 Conditions:
Associations with Sex

Although many proteins differed in abundance between
females and males, there were three clear patterns of
longitudinal trends and abundance levels. First, several proteins
had similar longitudinal trends but different abundance levels
(Figure 4A); second, some proteins had similar longitudinal
trends and abundance levels (Figure 4B); third, some proteins
had different trends and different levels between females and
males (Figure 4C).
The proteins that were different between females and males

at 3 and 6 months were related to regulation of viral processes,
components of plasma membranes, extracellular matrix
organization, symbiotic processes, astrocyte differentiation,

Figure 3. Functional analysis of the proteins showed a decrease in abundance from admission for acute COVID-19 to 3 and 6 months. (A, B)
Trends of proteins with decreased abundance from admission to 3 and 6 months. The changes in protein abundances are relative to the protein
concentrations at admission and are represented as the Log2 fold change. The two trends identify proteins with different levels of decreased fold
change as shown on the vertical axis. The lists of proteins in each cluster are provided in Supporting Information Figure S1. C shows the functional
analysis as an association network of the proteins. Nodes represent the proteins, edges are associations between the proteins colored according to
the type (coexpression, colocalization, genetic interactions, pathway, physical interactions, predicted, or shared protein domains), and the functions
are mapped to the node in color as in the legend. The dynamic network can be reviewed online via the following link https://tinyurl.com/2s3jdesc
(the full link is provided in the Supporting Information links).
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Figure 4. Three main patterns of proteins differed according to sex in post-COVID-19 patients. Each plot represents abundance levels of proteins
at admission to the hospital for acute COVID-19 (Adm.) as well as at 3 months (3m) and 6 months (6m) after hospitalization. The vertical y-axis
shows protein concentration in fmol/μL. Figure 4A shows proteins that had parallel longitudinal trends but different protein abundances. Figure 4B
shows proteins with very similar longitudinal trends and abundances. Figure 4C shows proteins that had a pattern of inconsistent trends between
males and females.
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and negative regulation of lipid localization (Figures 5). To
verify that these differences were due to post-COVID-19
conditions rather than just sexual differences, we compared the
proteins that exhibited differential regulation based on sex in
the current post-COVID-19 cohort against those observed in
healthy control individuals. In our previous work, we studied
patients hospitalized for acute COVID-19 with plasma
specimens available for the first 2 weeks of hospitalization
and compared their plasma profile with those of healthy
individuals.28 The healthy individuals were on average younger
than the COVID-19 patients in our current study as well as in
our previous cohort. In the previous work, we extensively
analyzed the age signature of the plasma protein profile and
concluded that the difference in plasma proteomics was not
due to age.28 The sample size of the healthy individuals, six
females and eight males, is small compared to the patient
cohort, but the goal of including these samples was to have an
indication about the proteins showing sexual dimorphism in
healthy controls and to verify whether any such dimorphism is
indeed present in COVID-19 patients. For this goal, we

decided to consider only a limited number of individuals with
similar demographic backgrounds.
In the current work, 12 proteins differed between females

and males in the healthy controls before multiple testing
correction, and only one protein differed after multiple testing
correction. Of the 19 proteins that differed according to sex in
post-COVID condition patients, only phosphatidylinositol
glycan-specific phospholipase D (GPLD1) was lower in
females than in males in post-COVID condition patients as
well as in healthy controls. GPLD1 is a secreted enzyme
associated with hydrolase and lipid metabolism. The
concentration of GPLD1 in male and female patients was
very similar at admission and increased over 6 months to reach
values similar to those of healthy controls. Removing GPLD1
from the functional analysis did not affect the enriched
functions and pathways according to sex in post-COVID
condition patients. Protein levels were measured longitudinally
over six months in post-COVID condition patients but at only
one time in the healthy controls because we assumed that
protein levels were similar over time in healthy controls.

Figure 5. Functional analysis of the proteins associated with the longitudinal sex difference shown in Figure 2A of patients who were admitted for
acute COVID-19 and were evaluated at 3 and 6 months.
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Post-COVID-19 Proteomics and Pulmonary Function
Indicating Restrictive Lung Disease

Our proteomic results were associated with the severity of
post-COVID-19 restrictive lung disease as measured by FVC,
%, and DLCO, % (Figures 6 and 7). The protein
apolipoprotein L1 (APOL1), coagulation factors 12 (F12)
and 13B (F13B), complement factor D (CFD), glutathione
peroxidase 3 (GPX3), lysozyme (LYZ), α-1-microglobulin/
bikunin precursor (AMBP), and Parkinsonism-associated
deglycase 7 (PARK7) were associated with FVC, %. These
eight proteins showed an area under the receiver operating
curve, AUC, of 0.751 (CI:0.732−0.779) in a cross-validated
regression model for predicting FVC, % (Figure 6). Functional
analysis on these proteins indicated activation of the

complement system and association with plasma lipoprotein
particles. Proteins that were associated with DLCO, %,
prediction were adiponectin (ADIPOQ), α-antitrypsin (SER-
PINA1), complement component 8A (C8a), fibronectin
(FN1), and mucin 16 (MUC16). The five-protein panel had
an AUC of 0.707 (CI:0.676−0.737) (Figure 7). Interestingly,
in the functional analysis, these proteins were associated with
the regulation of the humoral immune system as well as the
pore complex, but no association to lipoprotein particles was
present.
In the sensitivity analyses in which we excluded the nine

patients who had asthma and three patients who had chronic
pulmonary disease, there were slight differences in the proteins
associated with FVC, %, and DLCO, %. Removing either or

Figure 6. Volcano plot (A) and area under the receiver operating characteristic curve (B) for proteins versus forced vital capacity % predicted of
patients who were admitted for acute COVID-19 and who were evaluated at 3 and 6 months. Logistic regression receiver operating characteristic
curve showed c-statistics of 75.1% for prediction of forced vital capacity % predicted based on the abundance of eight proteins.
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both of these subgroups affected the outcome of the analysis
slightly with AUC in the case of FVC, %, model changing from
0.751 (CI:0.732−0.779) to 0.700 (CI:0.669−0.731), 0.755
(CI:0.728−0.783), and 0.708 (CI:0.676−0.740) when exclud-
ing the nine asthma patients, the three chronic pulmonary
disease patients, and all 12 together, respectively. In the case of
DLCO, %, model, the AUC changed from 0.707 (CI:0.676−
0.737) to 0.750 (CI:0.72−0.78), 0.66 (CI:0.627−0.693), and
0.737 (CI:0.706−0.768) when excluding the nine asthma
patients, the three chronic pulmonary disease patients, and all
12 together, respectively.

■ DISCUSSION

The current study extends our prior exploration of the
proteomics of acute COVID-1928 and several other proteomic
studies of acute COVID-19 that have identified potential acute
COVID-19 therapeutic targets26,29,30 by investigating plasma
protein profiles in post-COVID-19 conditions. In the current
work, we investigated post-COVID-19 conditions and found
several lipid-related protein pathways that differed from
admission to 3 and 6 months, a few protein signals that
differed between females versus males, and several plausibly
pathogenic proteins that were associated with worse restrictive
lung disease.

Figure 7. Volcano plot (A) and area under the receiver operating characteristic curve (B) for proteins versus diffusing lung capacity for carbon
monoxide % predicted (DLCO, %) of patients who were admitted for acute COVID-19 and who were evaluated at 3 and 6 months. Logistic
regression receiver operating characteristic curve showed c-statistics of 70.7% for prediction of diffusing lung capacity for carbon monoxide %
predicted based on the abundance of five.
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The main novel features of our work are as follows; first, we
show that several proteins differ in longitudinal trends and
levels from hospital admission to 3 and 6 months between
females and males; second, we discovered completely novel
protein signatures with a high area under the concentration
curve that are significantly associated with objective pulmonary
function, evidence of restrictive lung disease; and third, we
show for the first time that most of the pathways that increase
from admission to 3 and 6 months are pathways that regulate
lipid levels and lipid function.
Functions Activated in the Initial Days of Acute COVID-19

In our previous work, protein levels, pathways, and associated
functions differed between healthy controls and patients
hospitalized for acute COVID-1928 that reflected acute
inflammatory response, complement activation, and protein
activation cascade. Longitudinal analysis over 14 days of
hospitalization showed increased lipid-associated functions, a
rapid decrease and rebound of complement activation,
humoral immune response, and acute inflammatory response-
related proteins, and constant fluctuations in the regulation of
smooth muscle cell proliferation, secretory mechanisms, and
platelet degranulation. In the current work, in which we follow
acute COVID-19 patients over a longer period of 6 months,
two observations are noteworthy. First, the activation of the
immune response resolves as the patient transitions from the
acute phase of the infection, which is expected. Second and of
particular interest, the initial disruptions in lipid homeostasis
observed in the first 2 weeks continued in the post-COVID-19
conditions. Further elaboration on this is provided in the
following sections.
Lipid Homeostasis and Post-COVID-19

Multiple proteins associated with several lipid-related pathways
increased in abundance from acute to post-COVID-19
conditions, suggesting that lipid dysregulation may contribute
to the development of post-COVID-19 conditions. Lipid
localization and transport proteins increased significantly,
specifically regulation of plasma lipoprotein particle levels,
triglyceride-rich plasma lipoprotein particle and triglyceride-
rich lipoprotein particle remodeling, sterol transport, choles-
terol transport, and regulation of lipid localization. These
findings regarding proteins associated with lipid metabolism
are consistent with earlier studies by others, which indicated a
unique post-COVID-19 condition lipidome signature.59,60

Our finding of lipid pathway dysregulation in COVID-19 is
aligned with a recent randomized controlled trial of proprotein
convertase subtilisin/kexin type 9 (PCSK9) inhibition using
the monoclonal antibody Evolucumab.61 Evolocumab treat-
ment decreased inflammation and mortality of patients with
acute COVID-19.61 PCSK9 is a critical regulator of lipid levels
because PCSK9 regulates low-density lipoprotein receptor
recycling, thereby modulating LDL62 levels. PCSK9 inhibition
also increases lipopolysaccharide63,64 and lipotechoic acid65

clearance in Gram-negative and Gram-positive bacterial sepsis
and improves outcomes of sepsis animal models. Our
proteomic findings and this positive trial of PCSK9 inhibition
in human acute COVID-19 suggest the hypothesis that PCSK9
inhibition could decrease the severity of post-COVID-19
conditions.
Molecular Functions Decreased in Post-COVID-19

A few molecular functions decreased significantly from
admission to 3 and 6 months. These included the innate

immune response (tertiary granules, complement binding,
opsonin binding, myeloid leukocyte migration, and positive
regulation of phagocytosis) and vascular vasomotion (vaso-
constriction and negative regulation of blood vessel diameter).
This indicates that the activation of the innate immune
response and the vasoactivity are characteristics of the acute
phase, and they dissipate upon recovery from the infection.
Difference between Female and Male Patients in
Post-COVID-19

In an earlier proteomic study of post-COVID-19 conditions, Li
and colleagues66 found differences in the extracellular matrix,
immune response, hemostasis pathways, lipid metabolism,
immune response, and pulmonary fibrosis-related proteins in
COVID-19 survivors at 6 months. Zoodsma and colleagues67

identified several inflammatory protein pathways that were
elevated (mediators of the tumor necrosis (TNF)-α and
transforming growth factor (TGF)-ß signaling pathways) in
the transition from acute COVID-19 to post-COVID-19
conditions several weeks later. To the best of our knowledge,
our work is the first study to use proteomics to identify
differences between females and males in the evolution from
acute to post-COVID-19 conditions. We identified functions
related to the regulation of viral processes, components of
plasma membranes, extracellular matrix organization, sym-
biotic processes, astrocyte differentiation, and negative
regulation of lipid localization. These differences in protein
regulation could explain in part why females have a higher risk
of developing more severe post-COVID-19 conditions.68 This
is consistent with previous observations that there is a post-
COVID-19 condition signature on the lipidome level.59,60

Females who had acute COVID-19 more frequently have
decreased DLCO, %, and 6 min walk test at follow-up; being
female is an independent risk factor for decreased DLCO, %,
and 6 min walk test.69 Differences in plasma proteomics of
females correlate with the observation that females have less
improvement in pulmonary function with exercise therapy in
post-COVID-19 conditions.70

Role of Restrictive Lung Disease and Impaired Pulmonary
Function

Restrictive lung disease and impaired pulmonary function are
important components of post-COVID-19 conditions that
correlate with breathlessness and impaired 6 min walk
test.71−73 We found that several plausible protein pathways
were associated with worse quantitative diagnostic markers
(FVC, % predicted, and DLCO, % predicted) of restrictive
lung disease. The main results did not change when we did
sensitivity analyses and excluded the patients who had pre-
existing asthma and COPD.
Different proteins and pathways were associated with FVC,

%, predicted, and DLCO, %, predicted, suggesting that
different proteins and pathways are associated with respiratory
muscle weakness versus interstitial lung disease. In general,
functional analysis of proteins associated with FVC, %,
predicted indicated activation of the complement system and
association with plasma lipoprotein particles. Proteins that
were associated with DLCO, %, predicted were proteins
associated with the humoral immune system and pore complex
regulation but with no lipoprotein associations.
Forced Vital Capacity and Post-COVID-19

Several functions and pathways were associated with FVC, %,
predicted, including apolipoprotein-related pathways, coagu-
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lation factors, complement components, peroxidation, and
lysozyme. Apolipoprotein L1 (apoL1) that was decreased in
patients with reduced FVC, %, predicted, is a minor
component of HDL and circulates with HDL3, and both
interferon-γ and TNF-α increase apolipoprotein L1. ApoL1 is
associated with focal glomerulosclerosis and HIV-associated
nephropathy,74 and renal dysfunction also frequently compli-
cates acute75 and post-COVID-19 conditions.33 Abundances of
coagulation factors XII and XIIIB (F12, F13B) were also
differentiated; F12 increases the generation of angiotensin and
bradykinin, both of which are central to the pathogenesis of
acute COVID-19.76−78 Complement activation is also
fundamental to the pathogenesis of acute COVID-19.79

Complement factor D (CFD) cleaves complement factor
B,80,81 and deficiency of CFD is associated with the increased
risk of Neisseria infection. Glutathione peroxidase 3 (GPX3)
detoxifies hydrogen peroxide; hydrogen peroxide causes
pulmonary epithelial injury82 in pneumococcal pneumonia83

and acute respiratory distress syndrome,84 a common
complication of acute COVID-19. Lysozyme (LYZ) is an
innate immunity glycoside hydrolase with potent antimicrobial
activity.85 Although lysozyme protects against corneal SARS-
CoV-2,86 its role in systemic COVID-19 remains unknown. α-
1-Microglobulin/bikunin precursor (AMBP), a plasma glyco-
protein, is catalyzed to form α-1-macroglobulin that regulates
the inflammatory response but has not, to date, been reported
to modulate inflammation in COVID-19. Parkinson disease
protein 7 (PARK7) is a sensor of oxidative stress that may be
relevant in COVID-19 by protecting against neuron cell death.
Diffusing Capacity of the Lungs for Carbon Monoxide and
Post-COVID-19

Five proteins with known lung injury or acute COVID-19
injury mechanisms were significantly associated with DLCO,
%, in post-COVID-19 conditions. Adiponectin (ADIPOQ), an
adipose tissue-derived protein hormone, regulates glucose and
fatty acid oxidation; low adiponectin to leptin levels occur in
acute COVID-19 pneumonia87 and may be important in post-
COVID-19 condition restrictive lung disease. α-Antitrypsin
(SERPINA1) is a protease inhibitor that protects against
COPD emphysema; α-antitrypsin deficiency causes emphyse-
ma, by protecting against neutrophil elastase-induced lung
injury. α-Antitrypsin treatment in acute COVID-19 mitigated
inflammation and improved lung function.88 Complement
component 8A (C8A), a terminal complement pathway
component, interacts with coagulation to cause lung injury in
COVID-19. Fibronectin (FN1) is a coagulation component
that marks illness severity of acute COVID-1989 that could
contribute to post-COVID-19 condition restrictive lung
disease. Mucin16 (MUC16) is a protective component of
pulmonary epithelial cells, identified in a multimucin signature
for acute COVID-19.90

A different set of proteins was associated with FVC, %, than
with DLCO, %, for reasons that are still unclear. Respiratory
muscle weakness causes breathlessness without abnormal FVC,
%, in post-COVID-19 conditions71,72 and is best detected by
measuring the maximum inspiratory force,91 but unfortunately,
we did not measure that. FVC, %, decreased because of
respiratory muscle weakness, interstitial lung disease, or both.
In contrast, DLCO, %, decreased because of interstitial lung
disease not respiratory muscle weakness. Severe acute COVID-
19 is associated with more breathlessness and a lower DLCO,
%, value in post-COVID-19 conditions.73,92 Perhaps, the two

different causes of restrictive lung disease in post-COVID-19
conditions explain why we found different proteins associated
with FVC, %, than with DLCO, %; the dysregulation of
different proteins may cause respiratory muscle weakness
versus the interstitial lung disease in post-COVID-19
conditions.
Strengths and Limitations of Our Work

The strengths of our study include the longitudinal design of a
sample of acute COVID-19-hospitalized patients in whom we
were able to make repeated measurements of plasma protein
levels at the baseline and at 3 and 6 months, a female versus
male comparison, and the associations of protein pathways
with quantitative markers of restrictive lung disease under post-
COVID-19 conditions. Other strengths were the multicenter
design enhancing generalizability, the evaluation of differences
in proteins by sex in healthy controls, and the restrictive lung
disease sensitivity analysis, in which we removed patients who
had pre-existing lung disease. In our longitudinal analysis, we
referenced each protein to its own baseline protein level.
The limitations of our study were that we included samples

that were collected at hospital admission so we cannot infer
possible COVID-19 effects on plasma protein levels at earlier,
prehospital admission times. Blood was processed within a 4 h
window from collection and that may be viewed as a limitation.
Patients may not be representative of all post-COVID-19
condition patients but were representative of the overall British
Columbia post-COVID-19�Interdisciplinary Clinical Care
Network.55 Also, there is the possibility of false negative, i.e.,
proteoforms with very low abundance, transient, or not blood-
based that were not captured in this experimental design.
Finally, pre-existing pulmonary disease could contribute to
FVC, %, and DLCO, %, findings, but we suggest that the
contribution was small because sensitivity analyses with these
patients removed did not change our overall findings.

■ CONCLUSIONS
Lipid biology appears central to evolution from acute to post-
COVID-19 conditions because at least six lipid regulation-
related pathways increased from hospital admission to 3 and 6
months. In contrast, innate immunity and vascular regulation
pathways decreased over that period. The female propensity
for post-COVID-19 conditions (compared to males) may be
due to differential expression of several protein pathways that
regulate viral processes, plasma membranes, extracellular
matrix, symbiotic processes, astrocyte differentiation, and
lipid localization. Plausible protein pathways, which could be
potential drug targets, were associated with more severe worse
restrictive lung disease.
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The mass spectrometry proteomics raw data as well as the
associated skyline documents have been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier: PXD041762. Additional
data from our previous work28 and used for comparison in the
current work are available from PRIDE with the identifier:
PXD029437.
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Targeted proteomic panel with protein detectability and
quantifiability, baseline characteristics of the overall
British Columbia Post COVID-19�Interdisciplinary
Clinical Care Network (PC-ICCN) patients who had
been previously hospitalized for acute COVID-19,55 and
six protein clusters identified along with the proteins in
each cluster with functional analyses included in Figures
2 and 3 (PDF)
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